

Location Map

Project: Marsh Run II Redevelopment Address:11816 Wayzata Blvd

February 24, 2023

Loren Gordon Senior Planner City of Minnetonka 14600 Minnetonka Boulevard Minnetonka, MN 55345

Re: Marsh Run II Redevelopment

Dear Mr. Gordon,

Doran is proposing a new, high-quality, Class A luxury apartment project that will be complimentary to the Birke, in the 394 Corridor regional area. This project follows the City's 2040 Comprehensive Plan for the 394 Corridor regional area. This project will add life and vitality to the north side of 394, enhancing walkability, providing an additional housing option for existing residents, attracting the next generation of residents to the city, and supporting the nearby commercial uses that exist in the neighborhood today. The project will contain an affordable housing component mixed with market-rate apartments to contribute to the City's need for attainable and affordable housing. The project will provide ample and convenient visitor parking, including 40 dedicated short term and visitor stalls located in a surface lot directly in front of the building's main entrance along Wayzata Boulevard. In addition, this project will add to the City's parks and trail system, with a pedestrian bridge and walking trail loop that preserves a majority of the site's significant trees and landscape features. This is a unique opportunity to redevelop a 4.33 acre blighted and underutilized site to create an exceptional project that will contribute to the City's goals for affordable housing, tree preservation, and the connection of parks and trails.

The project is in a recommended redevelopment TIF District by the EDAC. The Plans will include razing an existing office building on the site and constructing a 197-unit apartment project, with 10% of the units affordable to households earning 60% of the area median income, and 10% of the units affordable to households 80% of the area median income. The building will contain a mix of alcove, 1 bed, 2 bed, and 3 bed apartments with active gathering spaces for residents and guest located on the first and second levels of the building. 304 parking stalls will be constructed to support the housing project with 266 of those stalls to be internal parking and 40 as surface parking. The internal parking stalls will be contained in a two-level parking garage with one of the levels being below grade.

For the building's exterior architecture, the project is thoughtfully designed around neighborhood characteristics and concept plan feedback. From the community and City feedback during the open house and sketch review process, the exterior design seeks to be contextual, timeless, and a unique contribution to the City of Minnetonka's architecture. To lower the visual scale of the building and relate to the more traditional architecture to the North, the overall building is broken up and articulated into 5 distinct pieces with a base, middle, and top to the building form. Historical inspiration is made modern with traditional cornice, frames, and book ends translated into clean black lines, panelized forms, and black accents. To add to the existing sense of place, the material palate will complement the existing retail center and the Birke apartment building with a mountain shadow velour brick base, white and earth tone lap siding, and black

DORAN DEVELOPMENT

cementitious panels and windows. To clearly call out the building entrances, black brick is used at the vehicle and pedestrian entrances; and a copper canopy on the center black brick form clearly identifies the main visitor and pedestrian entrance to the building. The building lighting will be further developed if the plans are formally approved. The project will have up/down sconces at select locations of the south elevations, along with lighting on the building canopy. Site lighting along sidewalks throughout the development will be further developed to meet code requirements.

On the north portion of the property features an existing wetland pond and walking trail loop. The development proposes a better pedestrian connection to the trail and wetland by extending a sidewalk along the eastern side of the proposed building to connect with Wayzata Blvd. The project also proposes a pedestrian bridge that will span the wetland east of the property and create a connection to Fairfield Road. Both connections will enhance the existing walking options in the neighborhood, especially for those with dogs.

The building south elevation has a height of 68' from grade which is the same height as the Birke Apartments just east of the proposed project. The proposed project is surrounded by wetland, and vacant land to the west, north and east. The eastern wetland on the property runs into the office building along Fairfield Road (11800 Wayzata Blvd). The developer will also purchase this property, with no immediate plans for redevelopment.

The developer is aware of parking concerns that exist in the neighborhood and has strategically planned for parking in this redevelopment that will accommodate the resident needs from the project, along with alleviate existing concerns in the neighborhood. The two-story podium will feature 266 parking stalls for residents. The 40 surface parking stalls will provide convenient options for short term resident and guest parking. With the Birke Apartments, the developer learned that even with plenty of excess guest stalls, when the stalls are interior to the building – they will be underutilized because they are not convenient. In addition to more surface parking, the proposed project will have a higher parking ratio than the Birke Apartments with 1.55 total parking/stalls per unit vs. the Birke's 1.40 parking stalls/unit at the Birke. To alleviate the need for additional surface parking to serve the Birke Apartments, the developer will be recording a parking easement on the 11800 Wayzata Blvd office property it plans to purchase with the acquisition of 11816 Wayzata Blvd. Peak parking demands for the office tenants on the 11800 Wayzata Blvd property are between the hours of 8:00 AM – 5:00 PM. Peak parking demands for the Birke apartments are in the hours that office tenants do not require parking, and weekends (especially in the summer months).

The site will have two points of ingress/egress – with a similar alignment of the existing property access points onto Wayzata Blvd. The western access point provides access to surface parking, the building main entrance and to the podium parking garage with internal ramping to level one. The eastern access to the parking podium will provide a connection to the lower level of the parking podium, with a move-in/delivery staging area. The access to the parking podium and move in door will wrap around a fully planted island as detailed in the Landscape Plans. The civil plans further show the option for a three-point turn around for residents to back out of the move in area or parking entrance internally before exiting onto Wayzata Blvd. The building entrance facing Wayzata Blvd is framed with a copper color sign canopy that becomes a focal point for the project.

The developer is proposing a unit of Alcove, 1-bedroom, 2-bedroom and 3-bedroom units. All units will feature direct access balconies or patios and luxury finishes. The project will feature a strategically placed entertainment suite available to all residents on level 6 at the northeast corner of the building. This location facing north, will allow residents to take in one of the best natural viewsheds of the property facing the wetland and large trees. The entertainment suite will have a connected balcony, naturally allowing the building to step down which is also the only portion of the building

in any shadow proximity of neighboring housing. The property will have an amenity deck on level two, facing west/southwest to allow for the best sunlight. The amenity deck will feature a pool, spa, multipurpose green space, firepits and grilling stations. Additional amenities throughout the project include:

- A business center;
- Flex work space;
- Clubroom;
- Entertainment Suite;
- Exercise facility;
- Dog park;
- Golf simulator;
- Site trail

The amenity deck pool will close at dusk when seasonally open during the year. Other amenities on the amenity deck would close by 10 p.m. as consistent with the City of Minnetonka noise ordinance. The property would also have security cameras to monitor this area and the rest of the property.

The Missing Middle & Affordable Units

The proposed project will incorporate 20% of the units affordable to households earning 60% and 80% AMI, what is referred to the "missing middle." The missing middle is defined as middle income households that continue to face a growing shortage of affordable housing supply, while incomes of these middle-income workers have not paced with the rising housing costs. According to a recent Urban Land Institute Study in Minnesota (ULI) affordable housing production has disproportionately targeted developing units at our below 60% AMI due to Low Income Tax Credit requirements. Multifamily projects at a state and local level that qualify under a Housing TIF District require units with deeper affordability levels. Low Income Tax Credit programs across the state of Minnesota require projects to have units affordable to households at or below 60% AMI, with most projects at even deeper affordability levels (30 & 50% AMI) to remain competitive. There is a real need for units affordable to households at 80% AMI, with only 97 of the 8,627 rental units affordable to this income. With a growing gap of units developed in the missing middle, the developer looks forward to being part of the local solution of the missing middle by adding a proposed 40 affordable units in the project.

Office Tenants & Relocation

With the acquisition of the office building, the developer plans to assist any businesses with active leases. The developer will have vacant space available in the adjacent 11800 Wayzata Blvd property it is also purchasing, along with office space in another property acquisition within 5 minutes of the property.

Evolution of the Project Design

On November 29, 2022, we hosted a neighborhood meeting at the Birke Community/Entertainment Room. The plans were further developed by our architecture team to show more site plan details, and unit mix/floor plans. The architecture team also prepared three building elevations in hopes to gain feedback from attendees on which elevation was the most reflective of the neighborhood. There was consensus that building elevation "3" was the best fit for their neighborhood and to complement existing developments. The initial Neighbor feedback on building scale, shadows concerns, protection of the site's environmental features and wildlife, dog walking and parking. Parking concerns for the

proposed project were discussed with more concerns over the existing parking issues along Fairfield Road and a request of the developer to find a solution.

Following this meeting, we presented the concept to the Planning Commission on January 16, 2023 & City Council on January 30th. This was the same concept plan shared with neighbors in November, but with one chosen elevation, shadow and height exhibits also prepared by our architecture team. During the Planning Commission meeting, three neighbors voiced the same concerns that heard at the November neighborhood meeting. The main three concerns discussed in detail were dog walking/waste, building scale and parking/Birke parking issues. The Planning Commissioners requested the developer find permanent solutions to the apparent parking overflow of Birke residents onto Fairfield Road. We discussed how the Marsh Run II proposed project would have a higher parking stall/unit ratio than the Birke. Most importantly, the proposed project would have an immense amount of surface and guest parking as it compares to the Birke. The City Council had similar feedback as it relates to concerns over the Birke parking. The Council requested further analysis on the exterior elevations to differentiate the project from other projects in Minnetonka. The Council also requested to understand uses of the TIF request beyond the affordable units.

The Economic Development Advisory Commission (EDAC) reviewed the TIF request in the amount of \$4.6 million on January 26th. The 11800 & 11816 Wayzata Blvd. parcels were both classified as functionally obsolete and blighted to further classified as a Redevelopment TIF District. With a Redevelopment TIF district, there is more flexibility on determining the mix of affordable units in the project. The selected mix of units affordable to households earning 60% and 80% of the area median income (AMI) was agreed upon by City staff and the developer. City staff reviewed their recently completed housing market report, and real time housing dashboard. Staffed reported there are many units in this area serving households earning at or below 50% AMI. This area is in specific need of more units affordable to households to households earning 60% and 80% AMI. As outlined above, there are many reasons there is low production of units for the "missing middle" – units affordable to households earning between 60-80% AMI.

Feedback Through Concept Review

Below are the concerns raised from the neighborhood, Planning Commission and City Council and how every item has been addressed to alleviate or compromise on all the concerns.

- This project will add stress to the existing parking concerns along Fairfield Road
 - The project will provide many more convenient surface stalls (40) for guest and short-term parking. We are advocating for the city to install additional no parking signs along Fairfield Road. Our Birke property management team is happy to be part of the ongoing solution and communication to its residents to correct the parking along this road. The commitment to a permanent parking easement at 11800 Wayzata Blvd. will provide another option for Birke residents and guest looking for a convenient location to park. The rest of the guest parking at the Birke can be accessed through the parking garage which is only entered off Wayzata Boulevard. There are plenty of vacant stalls currently available within the building.
- The amount of additional traffic along Wayzata Blvd.
 - As part of the application process the city will order a traffic study (paid for by Doran Companies) to look at the impacts that the development could have on the intersections at the development and secondary intersections that could see potential impacts. If there are impacts, the traffic engineer will provide suggestions to improve the level of service of the direct or indirect intersections.
- The building will cast a shadow to northern townhomes along Fairfield Court

- After the architecture team completed a shadow study of the project, the building was stepped down the at the northeast corner by moving the entertainment suite and balcony to the only portion of the building with any shadow impacts to neighbors. The closest distance to the NE building corner to the SE corner of the neighboring townhomes is 226', which significantly exceeds existing PID zoning setback requirements.
- With the rework of the building in the northeast corner of the project, during the lowest sunlight season evening hours, the projects shadow does not directly impact the neighbors.
- Loss of privacy with the trees surrounding the property
 - A majority of the trees on the property are within the delineated wetland boundaries and will remain. The proposed project also follows a very similar footprint to the existing office complex, allowing us to retain as many trees as possible. The developer will be required to submit and comply to a tree preservation plan with the city.
- The additional people and dogs in the neighborhood using the local trails and sidewalks, affecting the other homeowner association's fees and changing the quiet neighborhood.
 - There is an existing passive walking trail around the wetland pond to the north portion of the property. The development proposes a better pedestrian connection to the trail and wetland by extending a sidewalk along the eastern side of the proposed building to connect with Wayzata Blvd. The project also proposes a pedestrian bridge that will span the wetland east of the property and create a connection to Fairfield Road. Both connections will enhance the existing walking options in the neighborhood, especially for those with dogs.
- Birke residents are leaving dog waste throughout sidewalks and HOAs nearby.
 - Anyone who lives at the Birke or the proposed project with a dog will be required to have the dog take a DNA test to track their dogs if any issues arise on the property. This will help in reminding the residents to clean up after their dogs wherever they go. We are happy to be part of a community solution around the dog waste issue in the neighborhood.
- The impact to the environment and wetlands by the project
 - As part of any project, we have completed environmental studies to determine the wetland boundaries and associated protections of those wetlands. The proposed project meets all required setbacks from the site wetlands. Both our contractor and the city have requirements or guidelines that are to be followed during construction to ensure that the project does not affect the environment of the site. One of these items is a SWPPP or Storm Water Pollution Prevention Plan that would help guide the site, so no sediment is let off the site and would affect the storm water that may run into other local bodies of water.
 - The proposed wetland bridge plans to span the wetland to the east of the site. If the plans progress, the bridge design and construction will need to be further studied. The developer will work closely with the City and Bassett Creek Watershed district on a bridge design that minimizes or has no impact to the wetland.
- The overall design, height, scale and density of the project
 - The proposed project is further away from any residential neighbors than the Birke project is, surrounded by natural features that will remain on the site to the west, north and east & Interstate 394/Wayzata Blvd directly facing south. The building height is similar to the Birke and Bayhill Condominiums to the north (68' and 52' high buildings respectively). With the project sitting at a height that would create a consistent visual transition along the 394 corridor, the project is less dense than the Birke: 68 units/acre verses 48 units/acre.

- The amenity deck and pool area location why is this building amenity not on the north side of the building?
 - The amenity deck's location facing south-west will optimize the highest amount of daylight hours allowing for a more desirable building amenity.

Governmental Approvals

Below are the applications that are submitted as part of this entitlement package. We request that each individual application be taken action on individually in the order established below.

Rezoning to a Planned Unit Development (PUD)

The proposed project site is currently guided mixed use in the City's comprehensive plan allowing for high-density residential. The city 2040 comprehensive plan also encourages redevelopment of housing near area services and retail, while providing access to transit & create more pedestrian friendly neighborhoods. We believe the project will meet a public benefit and comprehensive plan goals as an outcome of the rezoning request. The rezoning request is to change the zoning from a PID (Planned I-394 District) to a PUD (Planned Unit Development). The City is looking to add diverse housing and affordable housing units. As further described below, the mix of units affordable to households earning 60% and 80% AMI was strategically selected based on the City's housing dashboard. This mix of affordable units will bring much-needed units to the "missing middle" – units affordable to households earning 60-80% AMI. These households are a key part of our community workforce. The project will also add additional high-quality housing stock near retail services, and public transportation. The project site is within two blocks of a retail center along Wayzata Blvd, along with a ¼ mile from Ridgedale Center. The proposed project brings housing to a site with two high-frequency bus stops outside of the property. Lastly, the project will greatly increase pedestrian connections with a neighborhood trail connection made to Wayzata Blvd and Fairfield Road.

Site and Building Plan Review

As required with the Minnetonka zoning code, we have prepared a site and building plan review application. This application will provide architectural plans and renderings to show the project. The application also includes civil plans, landscape plans, wetland delineation, tree plans and other items to help the City staff, Planning Commission and City Council to review and approve. Attached with the Site and Building Plan Review application are the following: legal description, survey, architectural site plan, grading and drainage plan, street and utility plan, tree plans, wetland delineation, landscape plans, floor plans and this as the written statement/project narrative.

Master Development Plan

A master development plan is submitted. This application has all the same information that the site and building plan review application has. The information will provide a larger understanding of the project and help City staff determine if there are any issues with the overall development of the site. The approval of the master development plan application will be the legal control governing the development of the property within the PUD. Attached with the Master Development Plan application are the following: legal description, survey, architectural site plan, grading and drainage plan, street and utility plan, tree plans, wetland delineation, landscape plan, building renderings, floor plans and this as the written statement/project narrative.

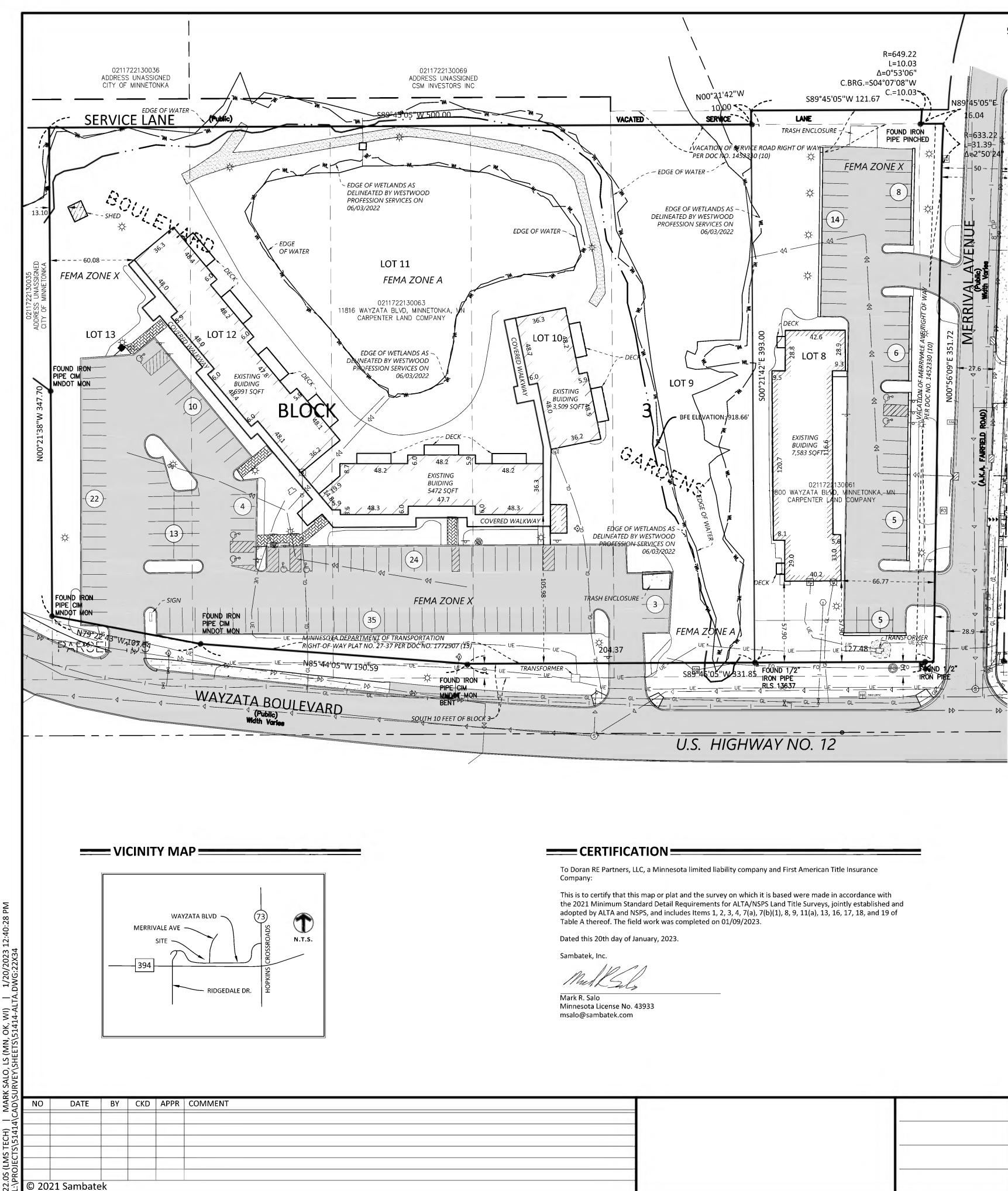
Conclusion

This project will significantly contribute to the City's goals and neighborhood's needs with high quality & affordable housing; a meaningful contribution to the City's parks and trails system; preserved significant trees; ample & convenient visitor parking; and a contextual & timeless architecture that's unique to the City of Minnetonka. Enclosed are the land use applications & supplementary plans/documents for review. Please feel free to reach out with any questions.

Sincerely,

Tony Ruechle Doran RE Partners, LLC

Exhibit A – Legal Description


Par 1: Lot 8, Block 3, except the South 10 feet taken for widening Superior Boulevard; and That part of vacated Marrivale Ave. described as follows: beginning at a point on the East line of Lot 8, Block 3, in said plat distant 10.00 feet North of the Southeast corner of said Lot 8; thence; East, parallel with the South line of said Lot 8, a distance of 6.00 feet; thence Northerly to the point of intersection with a line which runs parallel with and 50.00 feet Westerly from the Easterly line of said Avenue, said point of intersection being 31.52 feet Southerly of the Easterly extension of the North line of said Lot 8, as measured along the last said parallel line; thence Northerly along said parallel line, a distance of 31.52 feet ot said Easterly extension of the North line of Lot 8; thence West along said Easterly extension, to the Northeast corner of said Lot 8; thence Southerly, along said East line of Lot 8, to said point of beginning; That part of Service Lane lying South of the center line thereof and between the Westerly right-of-way line of Merrivale Ave. and a Northerly extension of the Westerly line of Lot 8, Block 3, "Boulevard Gardens, Hennepin Co. Minn."

Par 2: Lots 9, 10, 11, 12 and 13, Block 3, "Boulevard Gardens, Hennepin Co. Minn.", except the South 10 feet of said Lots 9, 10, 11, 12 and 13 and except that part of said Lots 11, 12 and 13 that is designated and delineated as Parcel 10C on the Minnesota Department of Transportation Right-of-Way plat No 27-37.

Subject to a perpetual easement in favor of the City of Minnetonka, its successors and/or assigns for public purposes over, under and across Merrivale Avenue as shown in Document No 1452330; (as to Par 1)

Subject to a reservation by the State of Minnesota of minerals and mineral rights; (as to Lot 9 in Par 2)

PID 02-117-22-13-0063

____LEGEND __

- FOUND MONUMENT
- FOUND CAST IRON
 MONUMENT FOUND RIGHT-OF-WAY MONUMENT
- SET MONUMENT O MARKED LS
- 포스- GATE VALVE / HYDRANT
- SANITARY MANHOLE
- CLEAN OUT **D** STORM MANHOLE
- STORM CATCH BASIN
- ✓ FLARED END SECTION TRANSFORMER
- 🗘 light -
- GUY ANCHOR
- Q UTILITY POLE
- GUARD POST ⊥ SIGN
- GAS METER
- **GAS MANHOLE** E ELECTRIC MANHOLE
- ☑ ELECTRIC METER
- TELEPHONE PEDESTAL
- CABLE TV BOX © COMMUNICATIONS MANHOLE

SURVEY NOTES =

1. This survey was prepared utilizing Title Commitment No. NCS-1148042-MPLS by First American Title Insurance Company, bearing an effective date of 09/02/2022.

BOUNDARY LINE

---- RIGHT-OF-WAY LINE

— – – — SECTION LINE

------ WATERMAIN

── ▷ ── STORM SEWER

------ CHAIN LINK FENCE

WIRE FENCE

RETAINING WALL

POND / WATER LINE

WOOD FENCE

(100.00)

____ Þ ____

TIE LINE

DEED DISTANCE

SANITARY SEWER

UNDERLYING / ADJACENT LOT

- 2. The bearing system is based on the Hennipin County coordinate system, NAD83 (1986 Adjust), with an assumed bearing of north 89 degrees 45 minutes five seconds east for the South line of the Northeast quarter, Section 2, Township 117, Range 22.
- 3. Improvements depicted on this survey are a combination of data collected by Sambatek and by others.

SUBJECT PROPERTY

Description from title commitment:

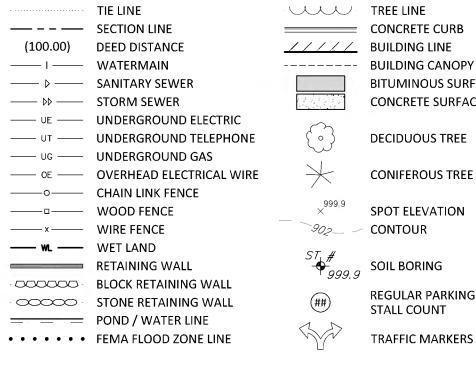
Parcel 1: Lot 8, Block 3, except the South 10 feet taken for widening Superior Boulevard; and That part of vacated Marrivale Avenue described as follows:

Beginning at a point on the East line of Lot 8, Block 3, in said plat distant 10.00 feet North of the Southeast corner of said Lot 8; thence; East, parallel with the South line of said Lot 8, a distance of 6.00 feet; thence Northerly to the point of intersection with a line which runs parallel with and 50.00 feet Westerly from the Easterly line of said Avenue, said point of intersection being 31.52 feet Southerly of the Easterly extension of the North line of said Lot 8, as measured along the last said parallel line; thence Northerly along said parallel line, a distance of 31.52 feet of said Easterly extension of the North line of Lot 8; thence West along said Easterly extension, to the Northeast corner of said Lot 8; thence Southerly, along said East line of Lot 8, to said point of beginning; That part of Service Lane lying South of the center line thereof and between the Westerly right-of-way line of Merrivale Avenue and a Northerly extension of the Westerly line of Lot 8, Block 3, "Boulevard Gardens, Hennepin County Minnesota."

Parcel 2: Lots 9, 10, 11, 12 and 13, Block 3, "Boulevard Gardens, Hennepin County Minnesota.", except the South 10 feet of said Lots 9, 10, 11, 12 and 13 and except that part of said Lots 11, 12 and 13 that is designated and delineated as Parcel 10C on the Minnesota Department of Transportation Right-of-Way plat No 27-37.

The following notes correspond to the reference numbers listed in Schedule B, Section 2 of the title commitment.

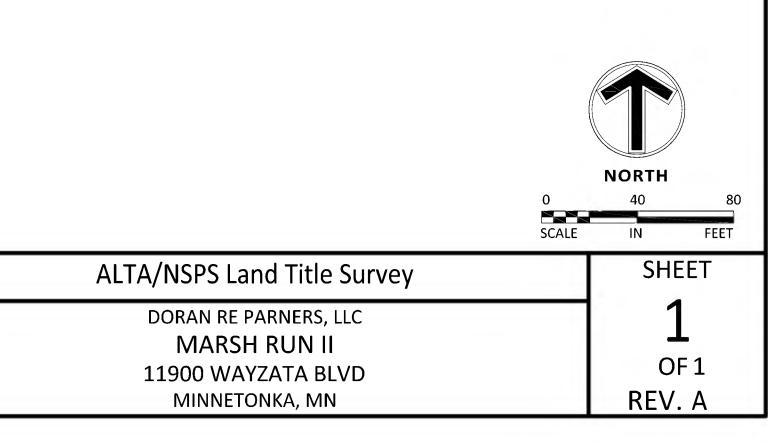
- 10. Subject to a perpetual easement in favor of the City of Minnetonka, its successors and/or assigns for public purposes over, under and across Merrivale Avenue as shown in Document No 1452330; (as to Par 1) shown as a recital on the Certificate of Title. According to the description in said document, the Right-of-Way lies within the surveyed property as shown hereon.
- 11. Subject to a reservation by the State of Minnesota of minerals and mineral rights; (as to Lot 9 in Par 2), shown as a recital on the Certificate of Title. **The document is blanket in nature and are not** graphically depicted
- 12. Easement for highway purposes (Trunk Highway No. 12) acquired by State of Minnesota over Southerly 10 feet together with the right of construct and maintain temporary snow fences on lands adjacent thereto, as evidenced by Final Certificate, recorded January 14, 1938, as Document No. 139851 (Not reflected on the Certificate of Title). According to the description in said document, the Right-of-Way lies adjacent to the surveyed property as shown hereon.
- 13. State Right-of-Way Plat, recorded November 6, 1986, as Document No. 1772907. According to the description in said document, the Right-of-Way is the southern boundary of the surveyed property as shown hereon.
- 14. No right of access exists from premises to Interstate Highway No. 394. Right of access was acquired by the State of Minnesota as evidenced by Final Certificate, recorded September 12, 1990 as Document No. 2123328. (Not reflected on the Certificate of Title) According to the description in said document, the Right of Access adjoins the surveyed property as shown hereon. Based on the description in said document, the right of access to Parcel 10-C was not specifically taken by said document. The Surveyor is not depicting any access restrictions on the survey. Direct access to Interstate 394 is obstructed by a chainlink fence on the south side of Wayzata Boulevard frontage road.
- 15. Terms and conditions as contained in Planning Commission Resolution No. 2019-06, recorded March 21, 2019, as Document No. T05601870. According to the description in said document, the resolution does not lie within or benefit the surveyed property and is not graphically depicted hereon.

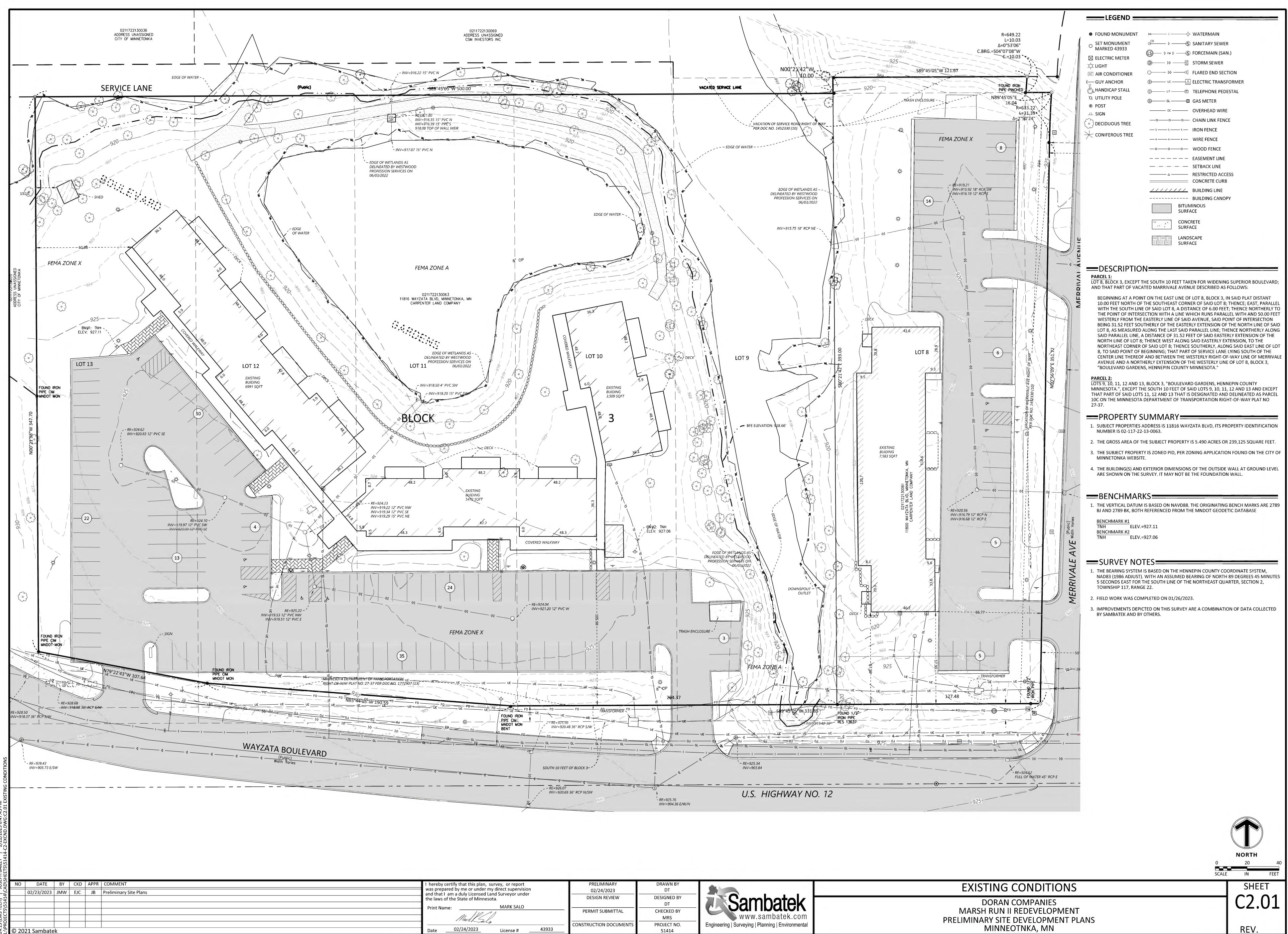

CDJ DESIGNED BY

DRAWN BY

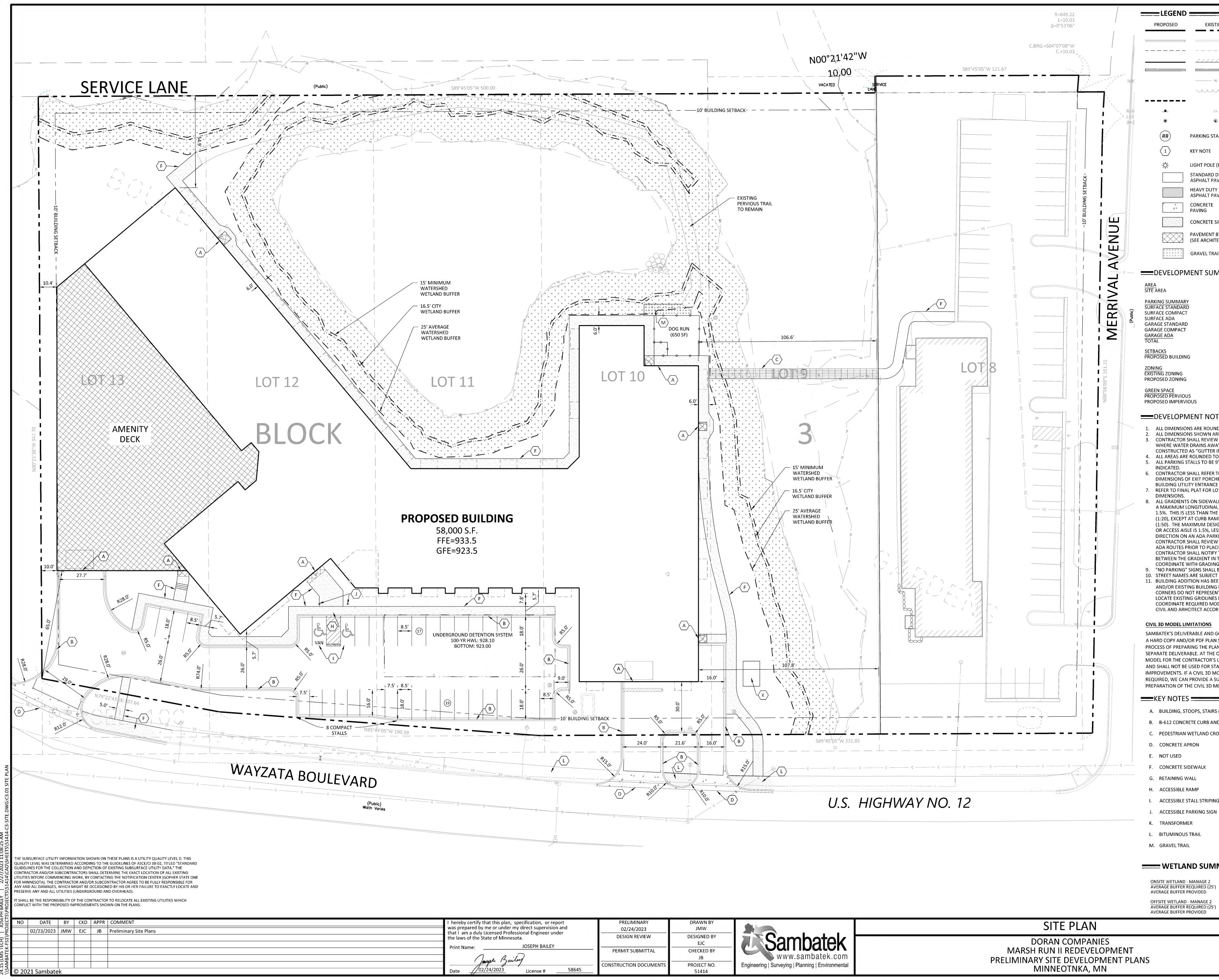
CHECKED BY

JN PROJECT NO.

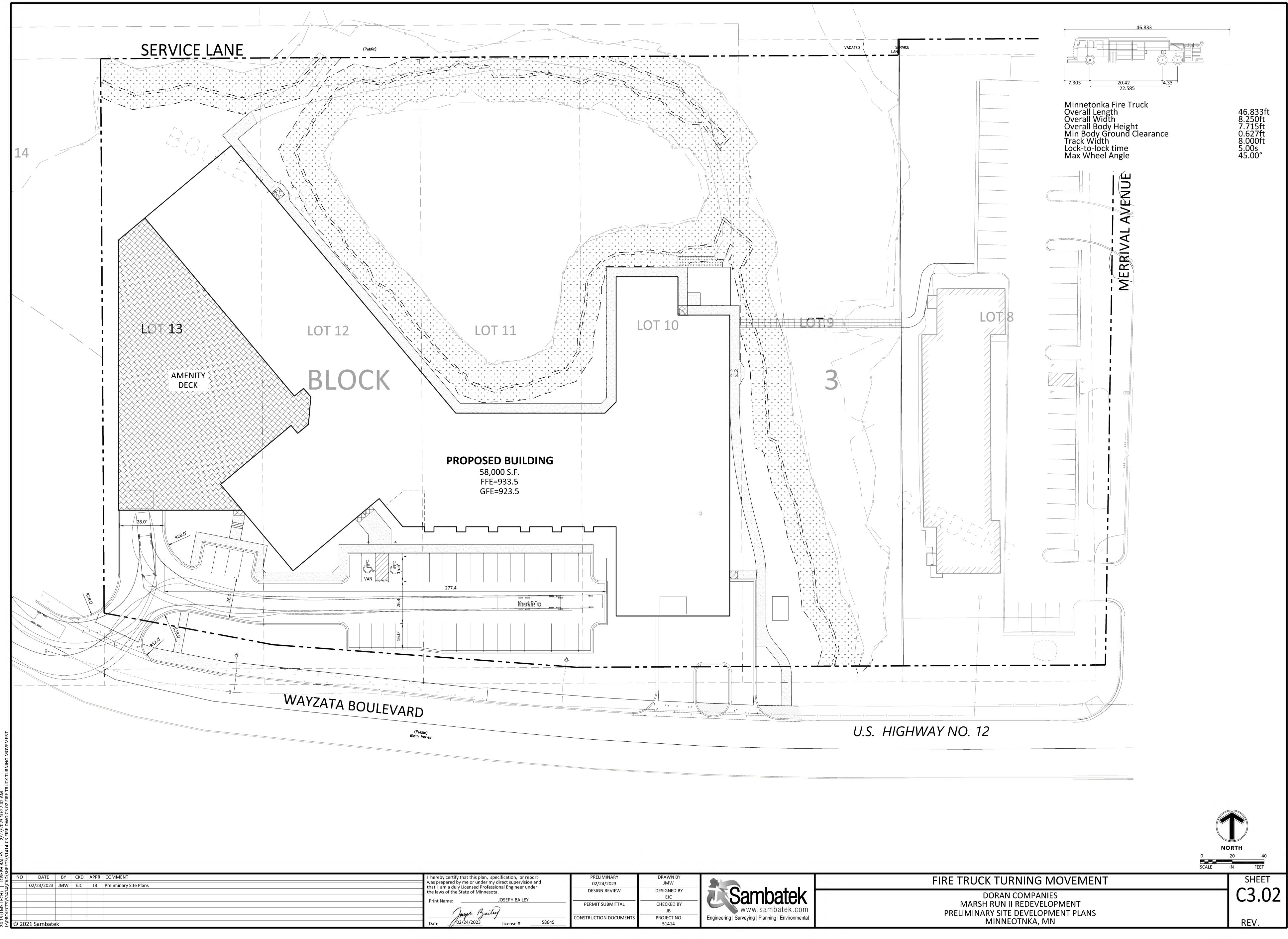


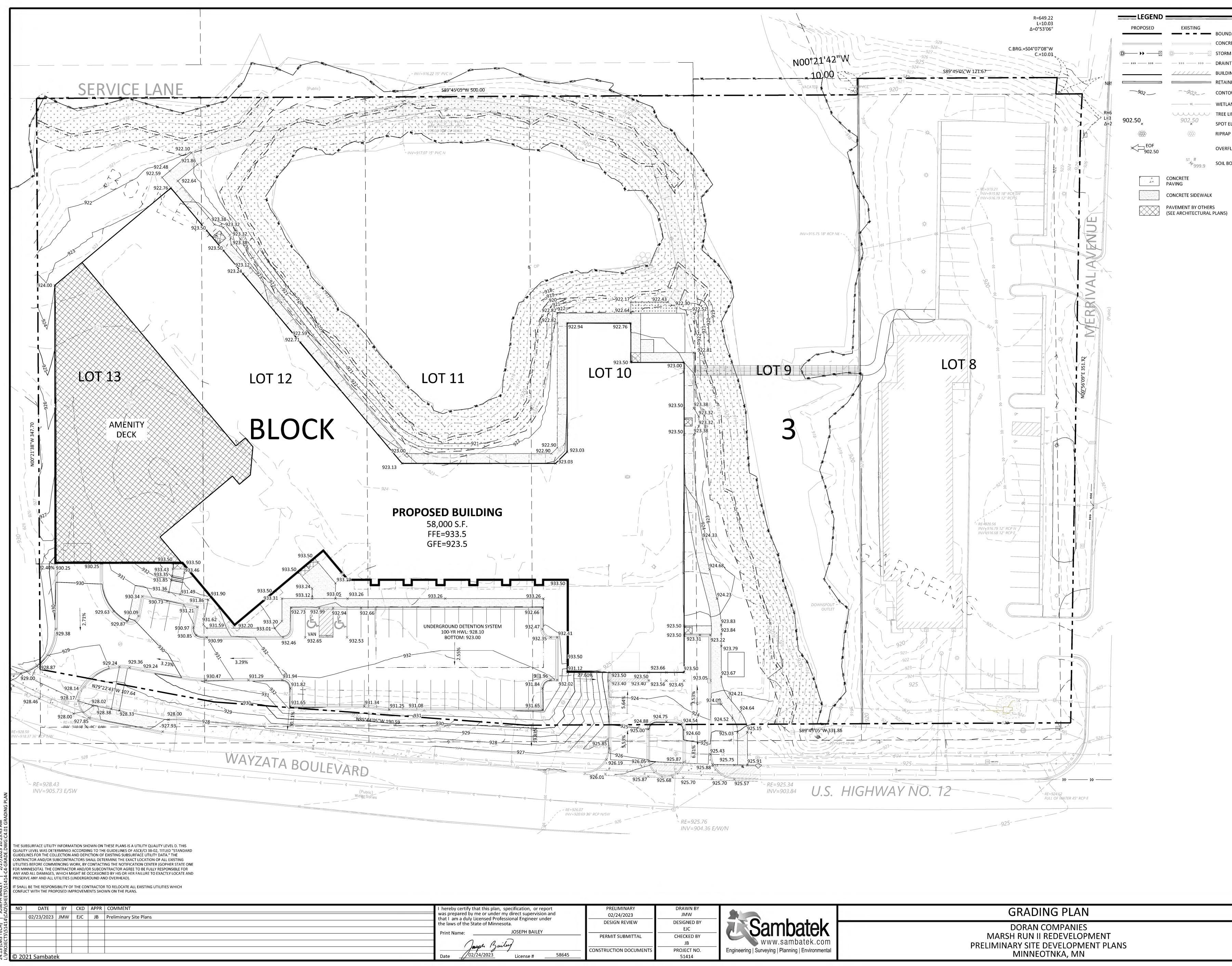

– – – – EASEMENT LINE - - - - SETBACK LINE $---- \Delta ---- RESTRICTED ACCESS$

- **BITUMINOUS SURFACE** CONCRETE SURFACE
- DECIDUOUS TREE
- CONIFEROUS TREE
- SPOT ELEVATION CONTOUR
- SOIL BORING
- **REGULAR PARKING** STALL COUNT
- TRAFFIC MARKERS


TABLE A" NOTES

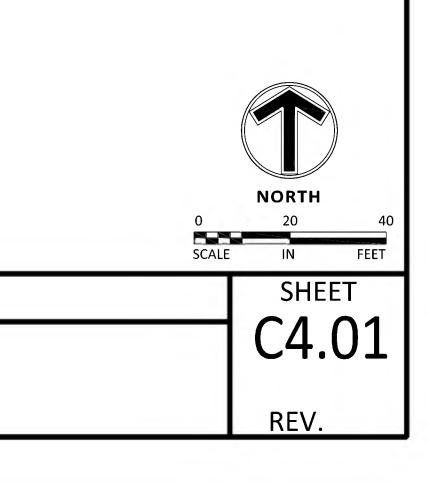
- 1. The survey shows property corner monuments or witness to the corner that were found during the field work, as well as property corner monuments or witness to the corner set by the surveyor at locations where there did not appear to be any evidence of an existing monument.
- 2. The address of the surveyed property is shown on the graphical portion of the survey.
- 3. The surveyed property lies within Flood Plain Zone X 'Areas determined to be outside the 0.2% annual chance flood plain' and Zone A, as depicted by scaled map location and graphic plotting according to FEMA, FIRM Map No. 27053C0331F dated 11/04/2016.
- 4. The gross land area of the surveyed property is 5.260 Acres or 229,125 Square Feet.
- 7a. The buildings and exterior dimensions of the outside wall at ground level are shown on the survey, which may or may not be the foundation wall.
- 7b1. The square footage of the buildings is are shown on the survey square feet, measured at ground
- 8. Visible substantial features observed in the process of conducting the fieldwork are shown hereon.
- 9. The parking areas and striping on the surveyed property are shown. There are 7 striped handicap parking stalls, and there are 149 striped regular parking stalls for a total of 146 striped parking stalls.
- 11. Evidence of underground utilities existing on or serving the surveyed property is shown per the following: a) Plans and/or reports were provided by the client.
- 13. The names of adjoining land owners according to the current county tax records as of 01/16/2023are shown on the survey.
- 16. There is no evidence of recent earth moving work, building construction or building additions observed in the process of conducting the fieldwork for this survey.
- 17. No changes in street right of ways are proposed per CITY OF MINNETONKA website. There is no observable evidence of recent street or sidewalk construction or repair.
- 18. Plottable off site easements and servitudes disclosed in the provided title documents and/or observed during the field work that appear to benefit and/or affect the subject property are shown hereon
- 19. Evidence of professional liability insurance obtained by the surveyor will be furnished upon request.


I hereby certify that this plan, survey, or report was prepared by me or under my direct supervision and that I am a duly Licensed Land Surveyor under the laws of the State of Minnesota. Print Name: MARK SALO Date 02/24/2023 License # 43933	PRELIMINARY 02/24/2023 DESIGN REVIEW PERMIT SUBMITTAL CONSTRUCTION DOCUMENTS	DRAWN BY DT DESIGNED BY DT CHECKED BY MRS PROJECT NO. 51414	Engineering Surveying Pla
--	--	--	-------------------------------


I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota. Print Name: JOSEPH BAILEY Joseph Bailey Joseph Bailey Date 02/24/2023 License # 58645	PRELIMINARY 02/24/2023 DESIGN REVIEW PERMIT SUBMITTAL CONSTRUCTION DOCUMENTS	DRAWN BY JMW DESIGNED BY EJC CHECKED BY JB PROJECT NO. 51414	Sam WWW.S Engineering Surveying Pl
---	--	---	---

AVERAGE BUFFER REQUIRED (25')

ΓING	BOUNDARY LINE
	CONCRETE CURB
	EASEMENT LINE BUILDING LINE
	WETLAND TREE LINE
٦	SAW CUT LINE SIGN
	BOLLARD
	r
(BY OTHER DUTY	S)
AVING Y	BUFFER AREA / 16.5' MIN 25' AVERAGE WETLAND
AVING	BUFFER AREA
SIDEWALK	
BY OTHERS	
	·····
MMARY	
239,1	25 SF 5.49 AC
	30 STALLS 8 STALLS 2 STALLS
	240 STALLS 18 STALLS <u>6 STALLS</u>
	304 STALLS
	10 FT
	PID PID
	128,280 SF 110,845 SF
TES	
IDED TO TH	IE NEAREST TENTH FOOT.
V PAVEMEI AY FROM C IN" CURB. O THE NEA	E OF CURB UNLESS OTHERWISE NOTED. NT GRADIENT AND CONSTRUCT "GUTTER OUT" CURB. ALL OTHER AREAS SHALL BE COORDINATE WITH GRADING CONTRACTOR. REST SQUARE FOOT. H AND 18' IN LENGTH UNLESS OTHERWISE
TO ARCHIT	ECTURAL PLANS FOR EXACT LOCATIONS AND S, PRECISE BUILDING DIMENSIONS AND EXACT
E LOCATIO	
L SLOPE OF	5 THE ADA ROUTE HAVE BEEN DESIGNED WITH 5 4.5%, AND A MAXIMUM CROSS SLOPE OF
MPS (1:12), IGN SLOPE	E MAXIMUM LONGITUDINAL SLOPE OF 5% AND A MAXIMUM CROSS SLOPE OF 2.00% IN ANY DIRECTION ON AN ADA PARKING STALL
KING STALL V AND VER	HE ADA CODE MAXIMUM SLOPE IN ANY . OR ACCESS AISLE OF 2.00% (1:50). THE IFY THE GRADIENT IN THE FIELD ALONG THE
CING CONC Y THE ENGI	RETE OR BITUMINOUS PAVEMENT. THE NEER IMMEDIATELY IF THERE IS A DISCREPANCY VERSUS THE DESIGN GRADIENT AND
IG CONTRA . BE PLACED	
EN LOCATE	ED BASED ON ORIGINAL GRIDLINE DESIGN CORNER SURVEY LOCATIONS. EXTERIOR
S IN THE FIE	G BUILDING GRIDLINES. CONTRACTOR SHALL ELD FOLLOWING DEMOLITION AND NS, IF ANY, TO EXPANSION PLACEMENT WITH
RDINGLY.	
	G DOCUMENTS FOR CONSTRUCTION SHALL BE
AN SHEETS,	A CIVIL 3D MODEL IS GENERATED IN THE IT IS AS A DESIGN TOOL ONLY AND NOT AS A REQUEST, WE WILL RELEASE OUR CIVIL 3D
USE. HOW	REQUEST, WE WILL RELEASE OUR CIVIL 3D EVER, ITS USE IS AT THE CONTRACTOR'S RISK CURB, SIDEWALK, OR OTHER HARD SURFACE
10DEL FOR	STAKING HARD SURFACE IMPROVEMENTS IS ITAL AGREEMENT FOR REFINEMENT AND
S (SEE ARCH	HITECTURAL PLANS)
ND GUTTER	
DNIICCO	
IG N	
_	
MARY	
)	18,870 SF 18,870 SF NORTH
)	0 20 40 14,832 SF
	14,877 SF SCALE IN FEET
	C3.01
	REV.


I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota. Print Name:JOSEPH BAILEY 	PRELIMINARY 02/24/2023 DESIGN REVIEW PERMIT SUBMITTAL CONSTRUCTION DOCUMENTS	DRAWN BY JMW DESIGNED BY EJC CHECKED BY JB PROJECT NO.	Engineering Surveying F
 Date	CONSTRUCTION DOCUMENTS	PROJECT NO. 51414	Engineering Surveying P

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota. Print Name: JOSEPH BAILEY Journ Baily Journ Baily Date 02/24/2023 License # 58645	PRELIMINARY 02/24/2023 DESIGN REVIEW PERMIT SUBMITTAL CONSTRUCTION DOCUMENTS	DRAWN BY JMW DESIGNED BY EJC CHECKED BY JB PROJECT NO. 51414	Engineering Surveying Pla
---	--	---	-------------------------------

XISTING	
	BOUNDARY LINE
	CONCRETE CURB
$ \rightarrow $	STORM SEWER
· ▶▶▶ ·	DRAINTILE
/////	BUILDING LINE
	RETAINING WALL
-902	CONTOUR
WL	WETLAND
uu.	TREE LINE
02.50 ×	SPOT ELEVATIONS
	RIPRAP
	OVERFLOW ELEV.
st # 9999.9	SOIL BORING

CONCRETE SIDEWALK

				=	C11411
		E	ROPOSED CONTOURS ARE TO FINISHED SURFACE ELEVATION. SPOT LEVATIONS ALONG PROPOSED CURB DENOTE GUTTER GRADE. CONTRACTOR SHALL REVIEW PAVEMENT GRADIENT AND CONSTRUCT "GUTTER		SHALL BE CUTTING WITH A C
		C	OUT" WHERE WATER DRAINS AWAY FROM CURB. ALL OTHER AREAS SHALL BE CONSTRUCTED AS "GUTTER IN" CURB.		ZONE SHA MACHINE
		Ν	ALL GRADIENT ON SIDEWALKS ALONG THE ADA ROUTE SHALL HAVE A MAXIMUM LONGITUDINAL SLOPE OF 5% (1:20), EXCEPT AT CURB RAMPS (1:12), AND A MAXIMUM CROSS SLOPE OF 2.00% (1:50). MAXIMUM SLOPE IN ANY		iii.STUMP RI
		C	DIRECTION ON AN ADA PARKING STALL OR ACCESS AISLE SHALL BE IN 2.00% 1:50). CONTRACTOR SHALL REVIEW AND VERIFY THE GRADIENT IN THE FIELD		SEVERED, STUMPS (
		À	LONG THE ADA ROUTES PRIOR TO PLACING CONCRETE OR BITUMINOUS.		STUMPS S THE DIRE
			DISCREPANCY BETWEEN THE GRADIENT IN THE FIELD VERSUS THE DESIGN GRADIENT. COORDINATE ALL WORK WITH PAVING CONTRACTOR.		iv.TREE PRU SHALL BE
	4	C	CONTRACTOR SHALL TAKE ALL PRECAUTIONS NECESSARY TO AVOID PROPERTY DAMAGE TO ADJACENT PROPERTIES DURING THE CONSTRUCTION PHASES OF		REPRESEN
		C	HIS PROJECT. CONTRACTOR WILL BE HELD SOLELY RESPONSIBLE FOR ANY AMAGES TO THE ADJACENT PROPERTIES OCCURRING DURING THE CONSTRUCTION PHASES OF THIS PROJECT.		g. AN OWNI THE PREP
	ļ	5. S	AFETY NOTICE TO CONTRACTORS: IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES, CONTRACTOR WILL BE SOLELY AND		h. MULCH R. QUALITY
		C	COMPLETELY RESPONSIBLE FOR CONDITIONS ON THE JOB SITE, INCLUDING AFETY OF ALL PERSONS AND PROPERTY DURING PERFORMANCE OF THE		REPRESEN
		Т	VORK. THIS REQUIREMENT WILL APPLY CONTINUOUSLY AND NOT BE LIMITED O NORMAL WORKING HOURS. THE DUTY OF THE ENGINEER OR THE		
		Р	EVELOPER TO CONDUCT CONSTRUCTION REVIEW OF THE CONTRACTOR'S ERFORMANCE IS NOT INTENDED TO INCLUDE REVIEW OF THE ADEQUACY OF THE CONTRACTOR'S SAFETY MEASURES IN, ON OR NEAR THE CONSTRUCTION		MAINTAIN i. THE USE (
	(S	ITE. CONTRACTOR SHALL COMPLETE THE SITE GRADING CONSTRUCTION IN		REQUIREE TREE LOC
	·	A	ACCORDANCE WITH THE REQUIREMENTS OF THE OWNER'S SOILS ENGINEER.	12.	EXCAVATE TO
			CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED SOIL ESTS AND INSPECTIONS WITH THE SOILS ENGINEER.		AND STOCKPIL SALVAGE ENO EXCESS TOPSC
			A GEOTECHNICAL ENGINEERING SOILS REPORT HAS BEEN COMPLETED BY: COMPANY: BRAUN INTERTEC		BUILDING PAD SUBCUT CUT A
			ADDRESS: 1101 HAMPSHIRE AVE S, MINNEAPOLIS, MN 55438		INCHES. RESP
			PHONE: 952-995-2238	13.	TRENCH BORR
			DATE: 02/23/2023		ENGINEER IN OR
	-		CONTRACTOR SHALL OBTAIN A COPY OF THE SOILS REPORT.		APPROVED BY MINIMUM OF
	8		HE SITE GRADING CONSTRUCTION. RIOR TO PLACEMENT OF THE AGGREGATE BASE, A TEST ROLL SHALL BE		EXCAVATION F
		S	ERFORMED ON THE STREET AND PARKING AREA SUBGRADE. CONTRACTOR HALL PROVIDE A LOADED TANDEM AXLE TRUCK WITH A GROSS WEIGHT OF 25		FROM THE FIN EXCAVATION S ELEVATION, AI
		A	ONS. THE TEST ROLLING SHALL BE AT THE DIRECTION OF THE SOILS ENGINEER ND SHALL BE COMPLETED IN AREAS AS DIRECTED BY THE SOILS ENGINEER.		REQUIREMEN MN/DOT SPEC
		۷	ORRECTION OF THE SUBGRADE SOILS SHALL BE COMPLETED IN ACCORDANCE VITH THE REQUIREMENTS OF THE SOILS ENGINEER.		PLACED ALON SLOPES EXCEE
	Q	F	EPLACE ALL SUBGRADE SOIL DISTURBED DURING THE CONSTRUCTION THAT IAVE BECOME UNSUITABLE AND WILL NOT PASS A TEST ROLL. REMOVE	14.	FINISHED GRA
		A	INSUITABLE SOIL FROM THE SITE AND IMPORT SUITABLE SOIL AT NO DDITIONAL COST TO THE OWNER. CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING AND MAINTAINING		AREAS. PROV TOLERANCES,
	-	٧	ENTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING AND MAINTAINING (EHICULAR AND PEDESTRIAN TRAFFIC CONTROL DEVICES SUCH AS ARRICADES, WARNING SIGNS, DIRECTIONAL SIGNS, FLAGMEN AND LIGHTS TO		ELEVATIONS A AREAS THAT H
		C	CONTROL THE MOVEMENT OF TRAFFIC WHERE NECESSARY. TRAFFIC CONTROL DEVICES SHALL CONFORM TO APPROPRIATE MINNESOTA DEPARTMENT OF		SUBSEQUENT ALL AREAS TH
	,	Т	RANSPORTATION STANDARDS. XISTING TREES AND OTHER NATURAL VEGETATION WITHIN THE PROJECT		CORRECT GRA
	-	A	ND/OR ADJACENT TO THE PROJECT ARE OF PRIME CONCERN TO THE CONTRACTOR'S OPERATIONS AND SHALL BE A RESTRICTED AREA. CONTRACTOR	15.	THE REQUIREN
		S	HALL PROTECT TREES TO REMAIN AT ALL TIMES. EQUIPMENT SHALL NOT IEEDLESSLY BE OPERATED UNDER NEARBY TREES AND EXTREME CAUTION		a. THE RESII SHALL NC
		P	HALL BE EXERCISED WHEN WORKING ADJACENT TO TREES. SHOULD ANY ORTION OF THE TREE BRANCHES REQUIRE REMOVAL TO PERMIT OPERATION		BELOW, T MEASURE
		S	OF THE CONTRACTOR'S EQUIPMENT, CONTRACTOR SHALL OBTAIN THE ERVICES OF A PROFESSIONAL TREE TRIMMING SERVICE TO TRIM THE TREES		b. THE COM
		C	RIOR TO THE BEGINNING OF OPERATION. SHOULD CONTRACTOR'S OPERATIONS RESULT IN THE BREAKING OF ANY LIMBS, THE BROKEN LIMBS HOULD BE REMOVED IMMEDIATELY AND CUTS SHALL BE PROPERLY		SHALL NC BELOW, T
		Р	ROTECTED TO MINIMIZE ANY LASTING DAMAGE TO THE TREE. NO TREES HALL BE REMOVED WITHOUT AUTHORIZATION BY THE ENGINEER. COSTS FOR		MEASURE c. THE STRE
		Т	RIMMING SERVICES SHALL BE CONSIDERED INCIDENTAL TO THE GRADING		SHALL NC BELOW, T
		_	a. RESTRICTED AREAS SHALL INCLUDE ALL DESIGNATED TREED AREAS OUTSIDE OF THE DESIGNATED CONSTRUCTION ZONE. ALL VEGETATION		MEASURE
			WITHIN THE RESTRICTED AREAS SHALL REMAIN.		d. AREAS W 0.30 FOO
			b. CONTRACTOR SHALL RESTRICT ALL GRADING AND CONSTRUCTION ACTIVITIES TO AREAS DESIGNATED ON THE PLANS. ACTIVITIES WITHIN THE		DIRECTED
			CONSTRUCTION MAY BE RESTRICTED TO A NARROWER WIDTH IN THE FIELD TO SAVE ADDITIONAL TREES AS DIRECTED BY THE OWNER.		e. TOPSOIL S SPECIFIED
			c. ACTIVITIES PROHIBITED OUTSIDE OF THE CONSTRUCTION BOUNDARIES	16.	AFTER THE SIT
			WOULD INCLUDE, BUT NOT BE LIMITED TO: SOIL AND OTHER MATERIAL STOCKPILING, EQUIPMENT OR MACHINERY STORAGE, DRIVING OF ANY		OFF THE SITE T
			VEHICLE, LEAKAGE OR SPILLAGE OF ANY "WASHOUT" OR OTHER TOXIC MATERIAL. THE COLLECTION OF OTHER DEBRIS AND SOIL STOCKPILING	17.	CONTRACTOR MAY BE REQU
			WILL BE IN AN AREA DETERMINED ON-SITE BY THE ENGINEER. d. ALL RESTRICTED AREAS SHALL BE FENCED OFF WITH BRIGHT ORANGE		SHALL INDICA MAP". CONTR
			POLYETHYLENE SAFETY NETTING AND STEEL STAKES AS SHOWN ON THE		GOVERNING A WHATEVER SE
			TREE PROTECTION DETAIL. AT NO TIME SHALL THIS FENCING BE REMOVED OR ACTIVITY OF ANY KIND TAKE PLACE WITHIN IT. FINAL PLACEMENT OF	18.	REQUIRED BY DISTURBED AF
			ALL PROTECTIVE FENCING SHALL BE COMPLETE BEFORE ANY WORK COMMENCES ON-SITE.		AREAS WITHIN ORGANIC SOIL
			e. BEFORE COMMENCING WITH ANY EXCAVATION CONTRACTOR SHALL COMPLETE ALL PREPARATORY WORK REGARDING TREE REMOVAL, ROOT		WETLAND ARE NORMAL WAT SOUTH AND W
			PRUNING, TREE PRUNING AND STUMP REMOVAL TO THE SATISFACTION		WINTER WHEA
			OF THE OWNER. f. PREPARATORY WORK SHALL INCLUDE THE FOLLOWING AND SHALL BE		BETWEEN OCT USED BETWEE
			COMPLETED UNDER THE DIRECT SUPERVISION OF THE OWNER'S REPRESENTATIVE:		SAME FOR OA POUNDS PER A
			i. TREE REMOVAL: CONTRACTOR SHALL FELL THE TREES. AT NO TIME SHALL	19.	VEGETATION I FILL PLACED W
			TREES BE BULLDOZED OUT, BUT SHALL BE CUT DOWN AND STUMPS REMOVED SEPARATELY. PRIOR TO THE FELLING OF ALL TREES, PROPER		WITH HUD/FH
			REMOVAL OF A PORTION OR ALL OF THE CANOPY SHALL BE COMPLETED SO THAT TREES IN THE RESTRICTED AREAS SHALL NOT BE INJURED IN THE	CIV	IL 3D MODEL LI
			PROCESS.		/IBATEK'S DELIV
			ii. ROOT PRUNING: BEFORE ANY STUMPS ARE TO BE REMOVED, ALL ROOTS		NERATED IN THE
DATE	BY	CKD	APPR COMMENT		

NO

© 2021 Sambatek

E SEVERED FROM ROOTS IN THE RESTRICTED AREAS BY SAW WITH A VERMEER DESIGNED FOR ROOT PRUNING, BY HAND, OR CHAINSAW. TREE ROOTS PROJECTING INTO THE CONSTRUCTION ALL BE EXPOSED PRIOR TO ROOT PRUNING WITH SMALL ERY, I.E..., BOBCAT.

REMOVAL: AT SUCH TIME THAT ROOTS HAVE BEEN PROPERLY , STUMPS MAY BE REMOVED. WHERE REMOVAL OF CERTAIN COULD CAUSE DAMAGE TO EXISTING PROTECTED TREES, TREE SHALL BE GROUND OUT. ALL STUMP REMOVAL SHALL BE UNDER ECT SUPERVISION OF THE OWNER'S REPRESENTATIVE.

JNING: PROPER PRUNING OF TREES IN THE RESTRICTED ZONE E DIRECTED BY AND SUPERVISION AT ALL TIMES BY THE OWNER'S NTATIVE.

IER'S REPRESENTATIVE WILL BE AVAILABLE AT ALL TIMES DURING PARATORY AND CONSTRUCTION PERIOD.

RATHER THAN SEED OR SOD WILL BE USED AT THE BASE OF TREES TO A PERIMETER DETERMINED BY THE OWNER'S NTATIVE. AREAS TO BE SEEDED FOR EROSION CONTROL ES WITHIN THE CONSTRUCTION ZONE ARE TO BE DETERMINED BY NER'S REPRESENTATIVE. NATURAL GROUND COVER WILL BE NED WHEREVER POSSIBLE.

OF RETAINING WALLS NEAR TREES, IN ADDITION TO THOSE D ON THE PLANS SHALL BE DETERMINED IN THE FIELD, BASED ON CATIONS AND TOPOGRAPHY.

PSOIL FROM AREAS TO BE FURTHER EXCAVATED OR REGRADED LE IN AREAS DESIGNATED ON THE SITE. CONTRACTOR SHALL DUGH TOPSOIL FOR RESPREADING ON THE SITE AS SPECIFIED. OIL SHALL BE PLACED IN EMBANKMENT AREAS, OUTSIDE OF DS, ROADWAYS AND PARKING AREAS. CONTRACTOR SHALL AREAS, WHERE TURF IS TO BE ESTABLISHED, TO A DEPTH OF 6 PREAD TOPSOIL IN AREAS WHERE TURF IS TO BE ESTABLISHED TO DEPTH OF 6 INCHES.

ROW CONSTRUCTION: IF ALLOWED BY THE OWNER, CONTRACTOR LETE "TRENCH BORROW" EXCAVATION IN AREAS DIRECTED BY THE ORDER TO OBTAIN STRUCTURAL MATERIAL. TREES SHALL NOT BE R DAMAGED AS A RESULT OF THE EXCAVATION, UNLESS Y THE ENGINEER. THE EXCAVATION SHALL COMMENCE A 10 FEET FROM THE LIMIT OF THE BUILDING PAD. THE FROM THIS LIMIT SHALL EXTEND AT A MINIMUM SLOPE OF 1 NTAL TO 1 FOOT VERTICAL (1:1) DOWNWARD AND OUTWARD NISHED SURFACE GRADE ELEVATION. THE TRENCH BORROW SHALL BE BACKFILLED TO THE PROPOSED FINISHED GRADE ND SHALL BE COMPACTED IN ACCORDANCE WITH ITS OF THE QUALITY COMPACTION METHOD AS OUTLINED IN CIFICATION 2105.3F2. SNOW FENCE SHALL BE FURNISHED AND IG THE PERIMETER OF THE TRENCH BORROW AREA WHERE THE

ED 2 FOOT HORIZONTAL TO 1 FOOT VERTICAL (2:1). ADING SHALL BE COMPLETED, CONTRACTOR SHALL UNIFORMLY S WITHIN LIMITS OF GRADING, INCLUDING ADJACENT TRANSITION /IDE A SMOOTH FINISHED SURFACE WITHIN SPECIFIED , WITH UNIFORM LEVELS OR SLOPES BETWEEN POINTS WHERE ARE SHOWN, OR BETWEEN SUCH POINTS AND EXISTING GRADES. HAVE BEEN FINISHED GRADED SHALL BE PROTECTED FROM CONSTRUCTION OPERATIONS, TRAFFIC AND EROSION. REPAIR IAT HAVE BECOME RUTTED, ERODED OR HAS SETTLED BELOW THE ADE. ALL AREAS DISTURBED BY THE CONTRACTOR'S OPERATIONS TORED TO EQUAL OR BETTER THAN ORIGINAL CONDITION OR TO MENTS OF THE NEW WORK.

DENTIAL BUILDING SUBGRADE FINISHED SURFACE ELEVATION OT VARY BY MORE THAN 0.30 FOOT ABOVE. OR 0.30 FOOT THE PRESCRIBED ELEVATION AT ANY POINT WHERE EMENT IS MADE.

IMERCIAL BUILDING SUBGRADE FINISHED SURFACE ELEVATION OT VARY BY MORE THAN 0.10 FOOT ABOVE, OR 0.10 FOOT THE PRESCRIBED ELEVATION AT ANY POINT WHERE EMENT IS MADE.

EET OR PARKING AREA SUBGRADE FINISHED SURFACE ELEVATION OT VARY BY MORE THAN 0.05 FOOT ABOVE, OR 0.10 FOOT THE PRESCRIBED ELEVATION OF ANY POINT WHERE EMENT IS MADE.

HICH ARE TO RECEIVE TOPSOIL SHALL BE GRADED TO WITHIN DT ABOVE OR BELOW THE REQUIRED ELEVATION, UNLESS OTHERWISE BY THE ENGINEER.

SHALL BE GRADED TO PLUS OR MINUS 1/2 INCH OF THE THICKNESS.

TE GRADING IS COMPLETED, IF EXCESS OR SHORTAGE OF SOIL ISTS, CONTRACTOR SHALL TRANSPORT ALL EXCESS SOIL MATERIAL TO AN AREA SELECTED BY THE CONTRACTOR, OR IMPORT TERIAL TO THE SITE.

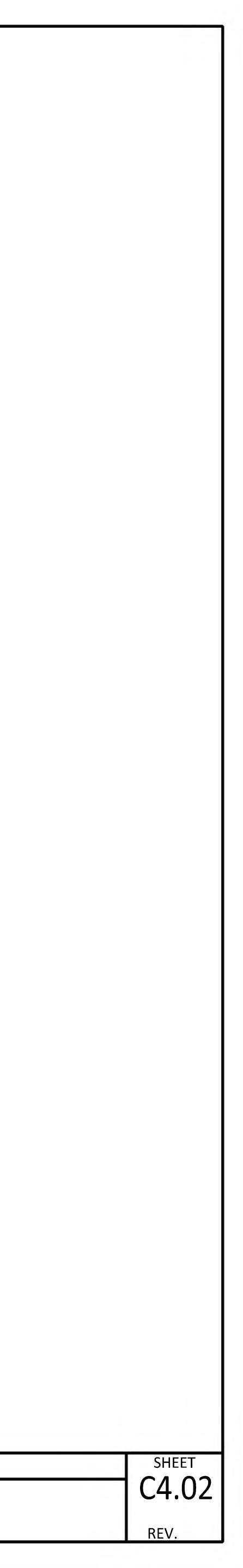
R SHALL DETERMINE THE LOCATION OF ANY HAUL ROADS THAT JIRED TO COMPLETE THE SITE GRADING CONSTRUCTION AND TE HAUL ROADS ON EROSION AND SEDIMENT CONTROL "SITE RACTOR SHALL COMPLY WITH THE REQUIREMENTS OF THE AUTHORITY OF EACH ROADWAY. CONTRACTOR SHALL POST ECURITY AND COMPLY WITH ALL CONDITIONS WHICH ARE EACH GOVERNING AUTHORITY OF EACH ROADWAY.

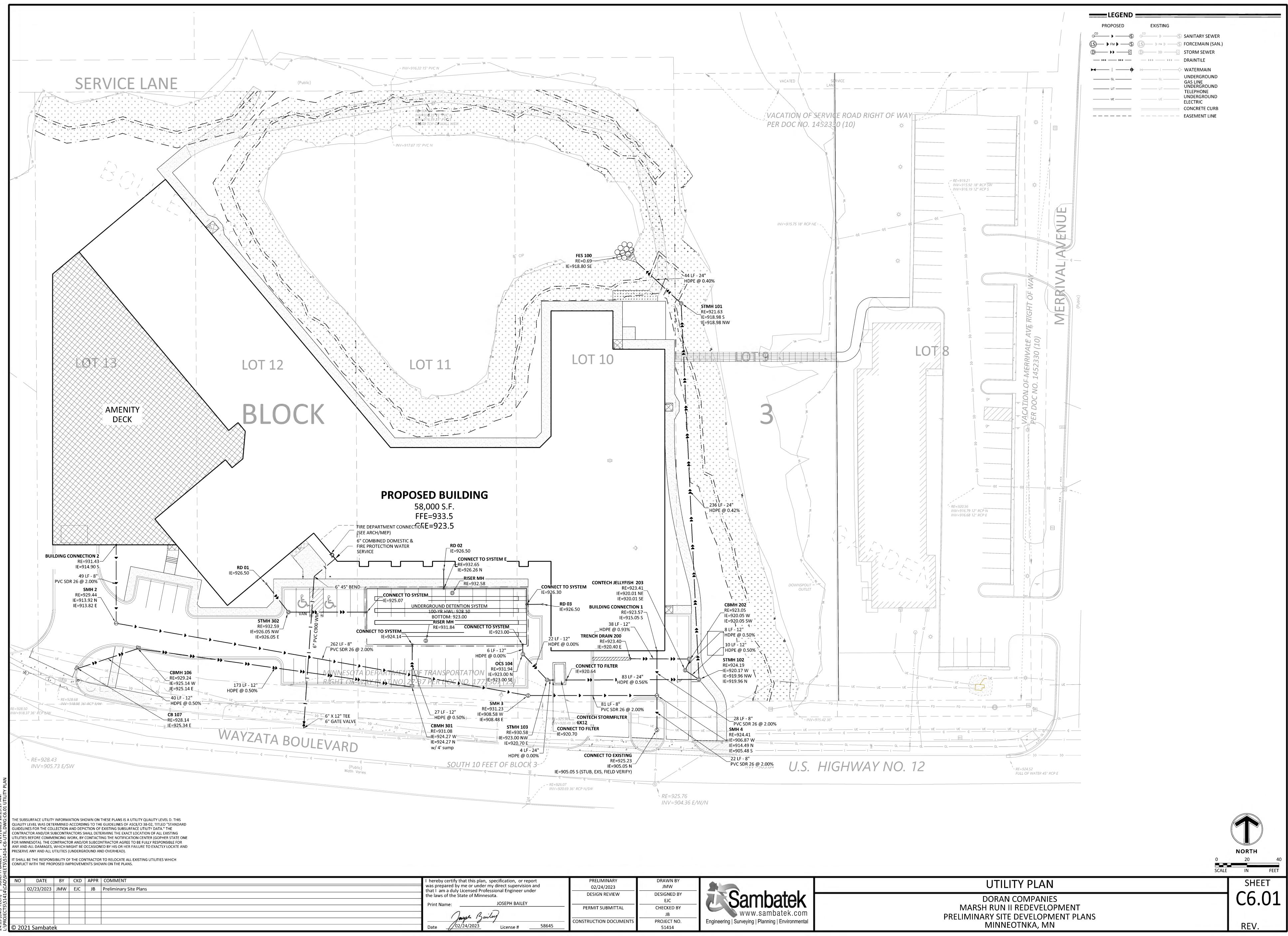
REAS WITHIN WETLAND MITIGATION SITE AND ANY DISTURBED N THE WETLAND SHALL BE RESTORED WITH 6 TO 12 INCHES OF LS, PREFERABLY SOILS THAT WERE PREVIOUSLY REMOVED FROM EAS. SEEDING IN THE WETLAND MITIGATION AREAS ABOVE THE TER LEVEL SHALL BE MN STATE SEED MIX 34-271, WET MEADOW NEST, OR APPROVED EQUAL. FOR STATE SEED MIXES, OATS AND AT SHOULD BE SELECTED BASED ON THE TIME OF YEAR THAT THE USED. OATS SHOULD BE INCLUDED IN MIXES IF BEING USED TOBER 15TH AND AUGUST 1ST. WINTER WHEAT SHOULD BE EN AUGUST 1ST AND OCTOBER 15TH. THE SEEDING RATE IS THE ATS AND WINTER WHEAT. MIX 34-271 SHOULD BE APPLIED AT 12 ACRE. SEED SHALL BE WATERED UNTIL A HEALTHY STAND OF IS OBTAINED.

WITHIN THE BUILDING PAD AREAS SHALL BE IN CONFORMANCE HA PROCEDURES AND DATA SHEET 79G.

IMITATIONS

VERABLE AND GOVERNING DOCUMENTS FOR CONSTRUCTION COPY AND/OR PDF PLAN SHEETS. IF A CIVIL 3D MODEL IS PROCESS OF PREPARING THE PLAN SHEETS, IT IS AS A DESIGN


TOOL ONLY AND NOT AS A SEPARATE DELIVERABLE. AT THE OWNER'S REQUEST, WE WILL RELEASE OUR CIVIL 3D MODEL FOR THE CONTRACTOR'S USE. HOWEVER, ITS USE IS AT THE CONTRACTOR'S RISK AND SHALL NOT BE USED FOR STAKING OF CURB, SIDEWALK, OR OTHER HARD SURFACE IMPROVEMENTS. IF A CIVIL 3D MODEL FOR STAKING HARD SURFACE IMPROVEMENTS IS REQUIRED, WE CAN PROVIDE A SUPPLEMENTAL AGREEMENT FOR REFINEMENT AND PREPARATION OF THE CIVIL 3D MODEL.


REV. DATE

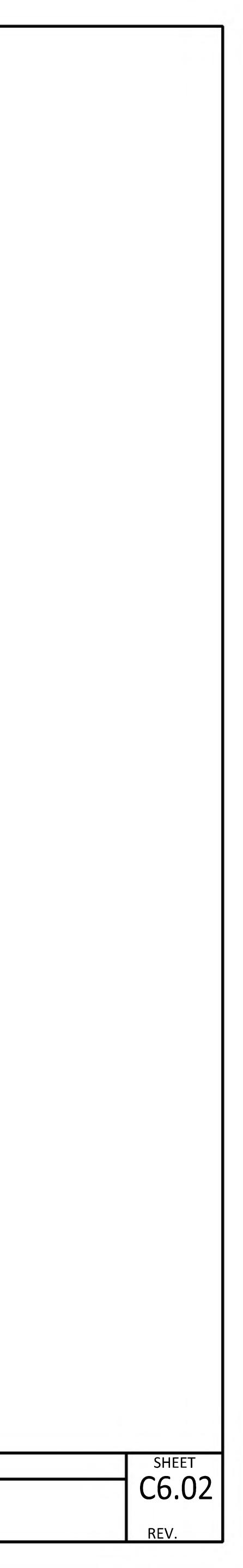
was prepared by m that I am a duly Lic the laws of the Star Print Name:	JOSEPH BAILEY	PRELIMINARY 02/24/2023 DESIGN REVIEW PERMIT SUBMITTAL CONSTRUCTION DOCUMENTS	DRAWN BY JMW DESIGNED BY EJC CHECKED BY JB PROJECT NO.	Engineering Surveying Pla
Date	4/2023License #58645		51414	

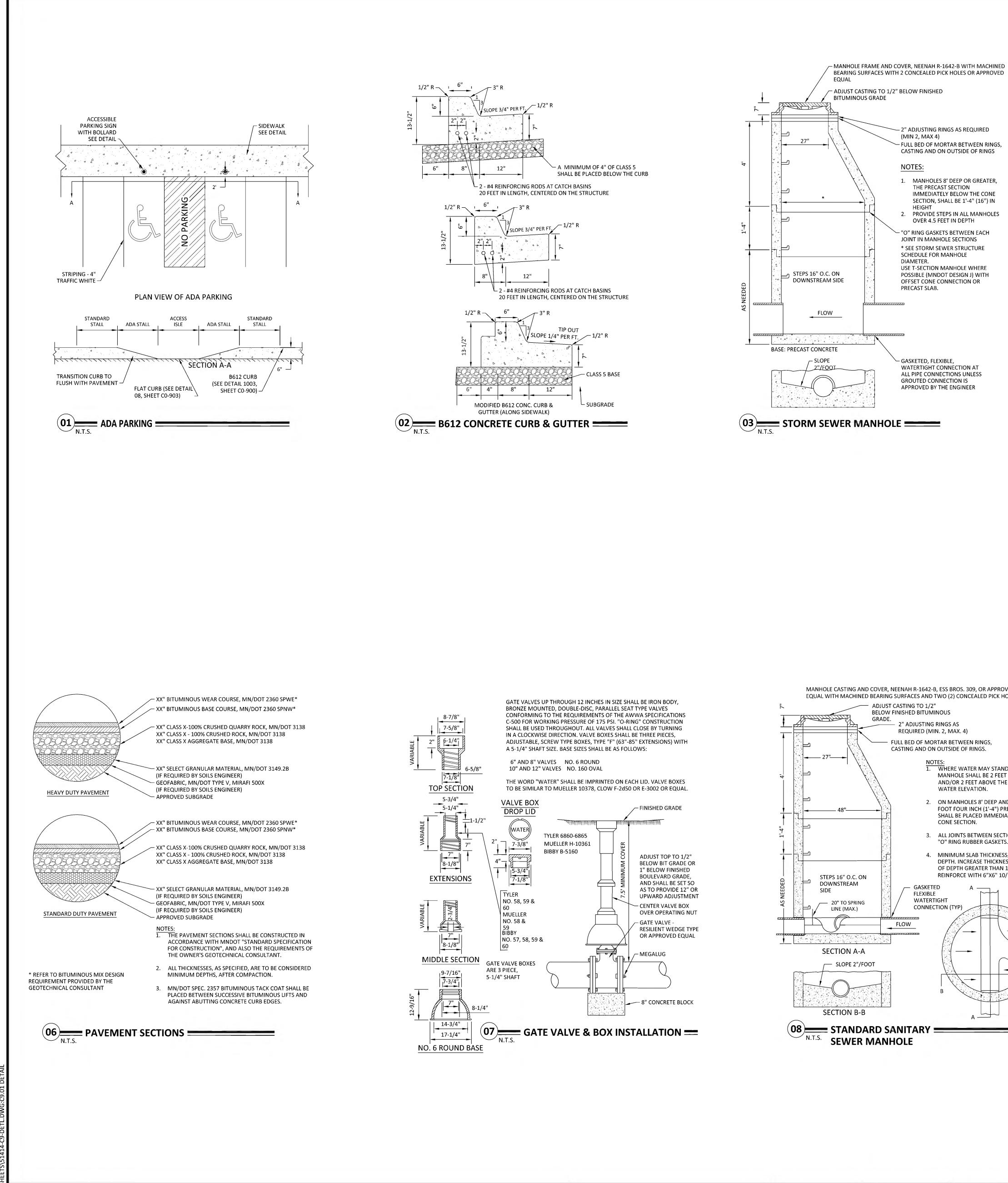
GRADING NOTES DORAN COMPANIES MARSH RUN II REDEVELOPMENT PRELIMINARY SITE DEVELOPMENT PLANS MINNEOTNKA, MN

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under	PRELIMINARY 02/24/2023	DRAWN BY JMW	
the laws of the State of Minnesota.	DESIGN REVIEW	DESIGNED BY EJC	Sam
	PERMIT SUBMITTAL	CHECKED BY JB	www.s
Journ Bailing Date02/24/2023 License #58645	CONSTRUCTION DOCUMENTS	PROJECT NO. 51414	Engineering Surveying P

\triangleright			 	C)
M	\triangleright	_	 	0)
>D	_		 	7	
		ÞI	_		
-			 	-4	5-
GL	_		 		
JT	_		 		
JE					
	_				

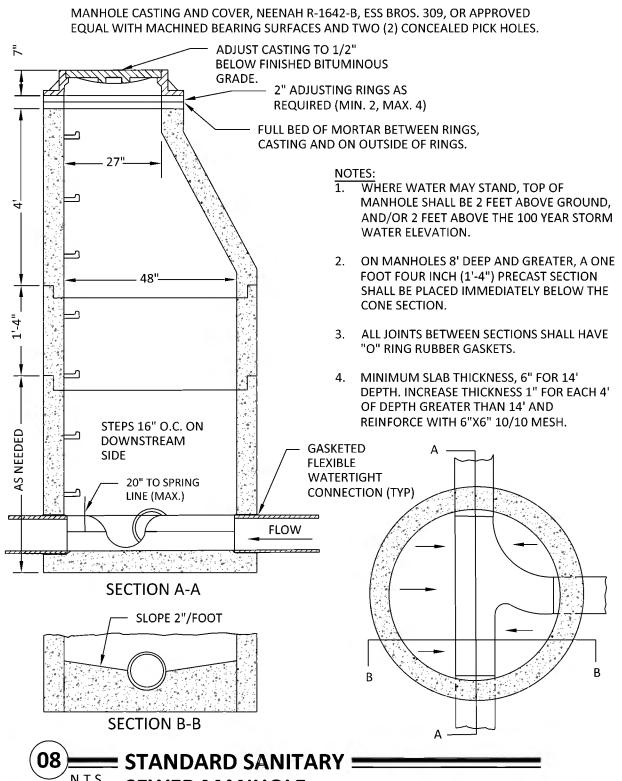
		UTI	ITY C	ONS	
		ACCOR THE CI HEREIN a. Al ST DE HE b. CC PII	Dance Ty Engi I. Cont L Utili Ate An Partm Alth R PNTRAC PE OR H	WITH NEERS RACTO TIES SH D FEDE IENT OI EQUIRI TOR SH	EMENTS FOR THIS PROJECT SHALL BE CONSTRUCTED IN THE "STANDARD UTILITIES SPECIFICATIONS" AS PUBLISHED BY ASSOCIATION OF MINNESOTA (CEAM), EXCEPT AS MODIFIED R SHALL OBTAIN A COPY OF THESE SPECIFICATIONS. ALL BE CONSTRUCTED IN ACCORDANCE WITH ALL LOCAL, RAL REQUIRMENTS, INCLUDING BUT NOT LIMITED TO CITY, E LABOR AND INDUSTRY AND MINNESOTA DEPARTMENT OF EMENTS. IALL NOT OPEN, TURN OFF, INTERFERE WITH, OR ATTACH ANY O OR TAP WATERMAIN BELONGING TO THE CITY UNLESS DULY
		SC TH	HEDUL IE LIABI	ED OR I LITY OF	DO SO BY THE CITY. ANY ADVERSE CONSEQUENCES OF ANY JNSCHEDULED DISRUPTIONS OF SERVICE TO THE PUBLIC ARE CONTRACTOR.
		SE IS	PARATI	ON OF RED AT .	RTICAL SEPARATION OF 18 INCHES, AND HORIZONTAL 10-FEET, BETWEEN OUTSIDE PIPE AND/OR STRUCTURE WALLS, ALL WATERMAIN AND SEWER MAIN (BUILDING, STORM AND SINGS.
		MODIF	IED HEF	REIN.	L BE AS SPECIFIED IN CEAM SPECIFICATIONS EXCEPT AS
					SHALL COMPLY WITH THE REQUIREMENTS OF THE CITY.
					WER SERVICES TO BUILDING SHALL BE PVC SCH 40 D ASTM D2665.
			L WATE		I TO BE DUCTILE IRON - CLASS 52, or PVC C-900, UNLESS ISE.
					I TO HAVE 7.5-FEET OF COVER OVER TOP OF WATERMAIN.
					T BLOCKING AND MECHANICAL JOINT RESTRAINTS ON ALL NTS PER CITY STANDARDS.
		N		TAIN A	LINE CROSSES A WATER SERVICE, THE WATER SERVICE SHALL NY JOINTS OR CONNECTIONS WITHIN 10 FEET OF THE
					ER PIPE TO BE SMOOTH INTERIOR DUAL WALL HDPE PIPE WITH SKETS, UNLESS NOTED OTHERWISE.
		P٧	C SCH 4	40 CON	WER PIPE FOR ROOF DRAIN SERVICES TO BUILDING SHALL BE FORMING TO ASTM D2665. Mn/DOT CLASS
					LDING SERVICE CONNECTION LOCATIONS AND INVERT ECHANICAL CONTRACTOR PRIOR TO CONSTRUCTION.
	4.	ALL BU OR LES	ILDING S COVE	SERVIC R ARE T	E CONNECTIONS (STORM, SANITARY, WATER) WITH FIVE FEET TO BE INSULATED FROM BUILDING TO POINT WHERE 5-FEET OF
	5.	CONTR		SHALL	TAKE ALL PRECAUTIONS NECESSARY TO AVOID PROPERTY NT PROPERTIES DURING THE CONSTRUCTION PHASES OF THIS
		PROJEC THE AE	T. CON	TRACTO T PROP	OR WILL BE HELD SOLELY RESPONSIBLE FOR ANY DAMAGES TO ERTIES OCCURRING DURING THE CONSTRUCTION PHASES OF
	6.	SAFET		Е ТО СС	ONTRACTORS: IN ACCORDANCE WITH GENERALLY ACCEPTED
	l	RESPO	SIBLE	FOR CO	CTICES, CONTRACTOR WILL BE SOLELY AND COMPLETELY NDITIONS ON THE JOB SITE, INCLUDING SAFETY OF ALL RTY DURING PERFORMANCE OF THE WORK. THIS
	,	WORK	NG HO	URS. TH	APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL IE DUTY OF THE ENGINEER OR THE DEVELOPER TO CONDUCT
	l	NCLUE	E REVI	EW OF	EW OF CONTRACTOR'S PERFORMANCE IS NOT INTENDED TO THE ADEQUACY OF CONTRACTOR'S SAFETY MEASURES IN, ON RUCTION SITE.
	7.	ALL AR	EAS OU	TSIDE 1	THE PROPERTY BOUNDARIES THAT ARE DISTURBED BY UTILITY L BE RESTORED IN KIND. SODDED AREAS SHALL BE RESTORED
	8.	CONTR	ACTOR	SHALL	OPSOIL PLACED BENEATH THE SOD. BE RESPONSIBLE FOR PROVIDING AND MAINTAINING TRAFFIC
		FLAGM NECESS	EN ANE SARY. TI) light Raffic	JCH AS BARRICADES, WARNING SIGNS, DIRECTIONAL SIGNS, 'S TO CONTROL THE MOVEMENT OF TRAFFIC WHERE CONTROL DEVICES SHALL CONFORM TO APPROPRIATE MENT OF TRANSPORTATION STANDARDS.
	l	EXCAV	ATION F	OR TH	IALL BE COMPLETED BY AN INDEPENDENT SOILS ENGINEER. E PURPOSE OF REMOVING UNSTABLE OR UNSUITABLE SOILS
	1	CONST	RUCTIO	N SHAI	D AS REQUIRED BY THE SOILS ENGINEER. THE UTILITY BACKFILL L COMPLY WITH THE REQUIREMENTS OF THE SOILS TOR SHALL BE RESPONSIBLE FOR COORDINATING ALL
	l	REQUI	RED SOI	LS TEST	TS AND SOIL INSPECTIONS WITH THE SOILS ENGINEER. A NEERING REPORT HAS BEEN COMPLETED BY:
			: 952-9		/IPSHIRE AVE S, MINNEAPOLIS, MN 55438 8
			02/23,		
	10.	CONTR	ACTOR	SHALL	OBTAIN A COPY OF THIS SOILS REPORT. SUBMIT 2 COPIES OF SHOP DRAWINGS FOR MANHOLE AND
		WORK	NG DAY	'S FOR	URES TO CONTRACTOR SHALL ALLOW 5 SHOP DRAWING REVIEW.
	I	DIAME	TER REC	QUIRED	ATERIAL SUPPLIER SHALL DETERMINE THE MINIMUM FOR EACH STORM SEWER STRUCTURE. STORMWATER SYSTEM SHOWN ON THE UTILITY PLAN AND
		THE DE	TAIL SH	IEETS IS	STORMWATER SYSTEM SHOWN ON THE UTILITY PLAN AND SFOR INFORMATIONAL PURPOSES ONLY AND DEPICTS THE REQUIREMENTS AND THE SYSTEM ELEVATIONS. THE
	1	CONTR	ACTOR	(WITH	THEIR SUPPLIER OR DESIGNER) SHALL SUBMIT DESIGN NGINEER FOR REVIEW AND APPROVAL PRIOR TO
	1	CONST	RUCTIO	N. THE	DESIGN DRAWINGS SHALL DEPICT THE FINAL LAYOUT AND UCTION. THE DRAWINGS SHALL BE CERTIFIED BY A LICENSED
		ENGIN	ER FOF	R THE S	TATE IN WHICH THE PROJECT IS CONSTRUCTED. THE CLUDE ALL NECESSARY PRODUCT INFORMATION, DESIGN
	1	CALCU	ATION	S AND	BEDDING REQUIREMENTS FOR THE PROPOSED STORMWATER CONSTRUCTION, THE CERTIFYING ENGINEER SHALL SUBMIT A
	l	LETTER	TO THE	EOWN	ER AND ENGINEER INDICATING THEY OBSERVED THE HE INSTALLATION OF THE STORMWATER SYSTEM WAS IN
	I	CONFC	RMAN	CE WITI	H THE CERTIFIED DRAWINGS.
)	DATE			APPR	COMMENT
	02/23/20	23 JM\	V EJC	JB	Preliminary Site Plans

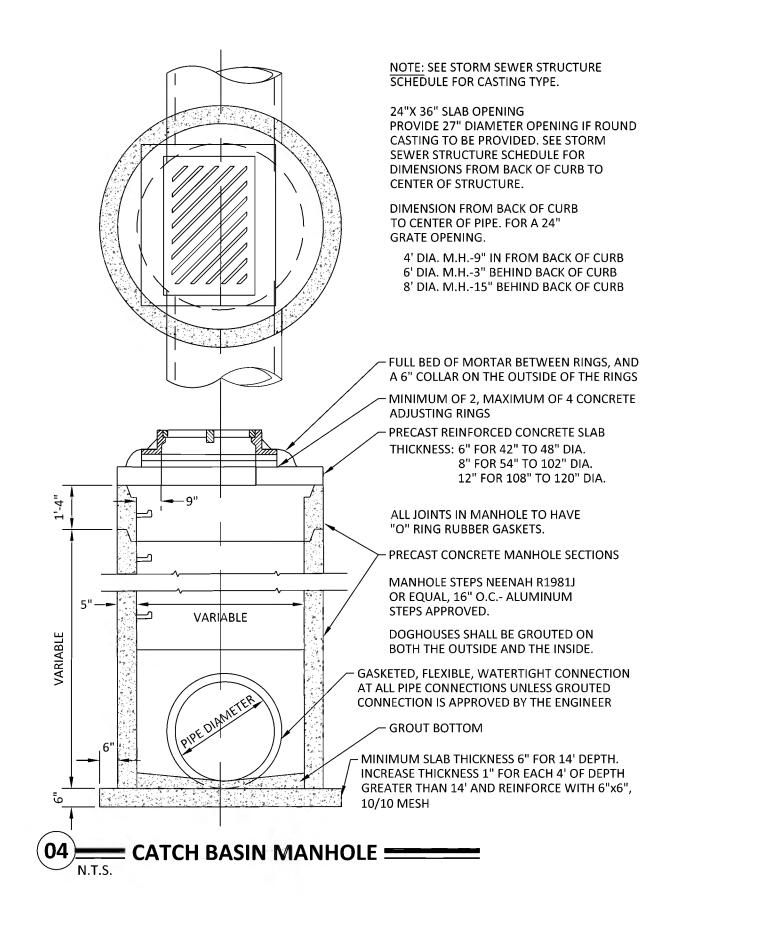

퓼									
AD\SH	NO	DATE	BY	CKD	APPR	COMMENT			
`U 		02/23/2023	JMW	EJC	JB	Preliminary Site Plans			
417									
21									
E S I									
Ŭ Ŭ									
i K									
121	02/23/2023JMWEJCJBPreliminary Site PlansImage: Image: Imag								

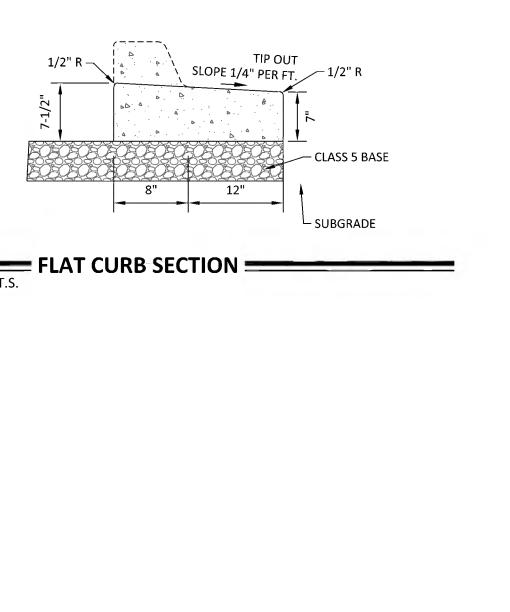

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota. Print Name: JOSEPH BAILEY	PRELIMINARY 02/24/2023 DESIGN REVIEW PERMIT SUBMITTAL	DRAWN BY JMW DESIGNED BY EJC CHECKED BY JB	Same Same Engineering Surveying Pl
Date License # 58645	CONSTRUCTION DOCUMENTS	JB PROJECT NO. 51414	Engineering Surveying Pl

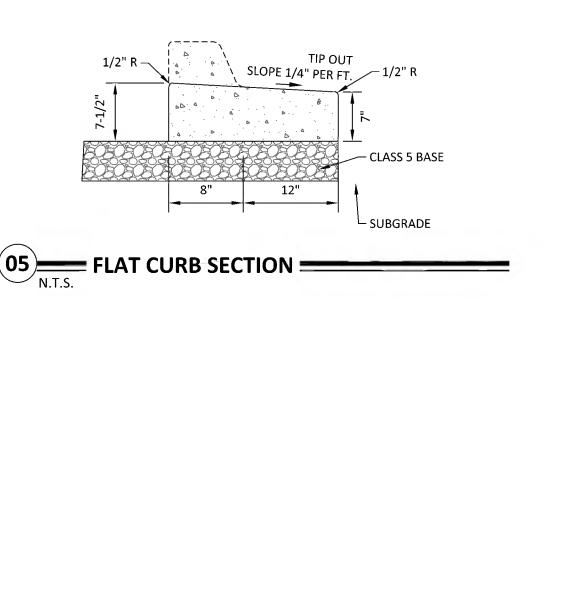
UTILITY NOTES

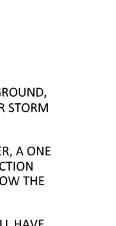
DORAN COMPANIES MARSH RUN II REDEVELOPMENT PRELIMINARY SITE DEVELOPMENT PLANS MINNEOTNKA, MN

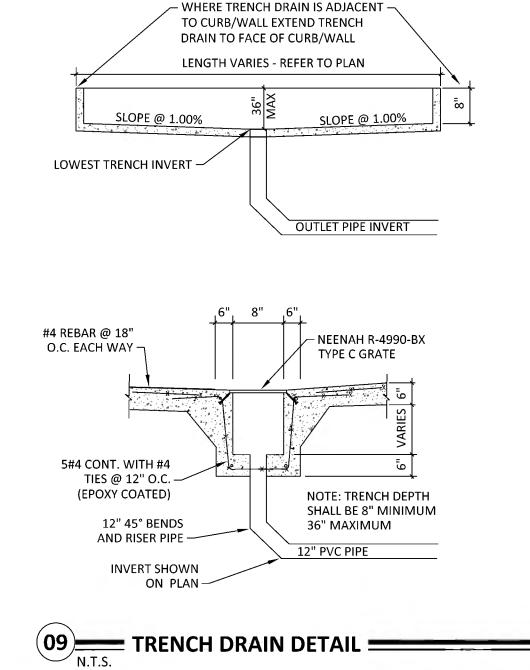


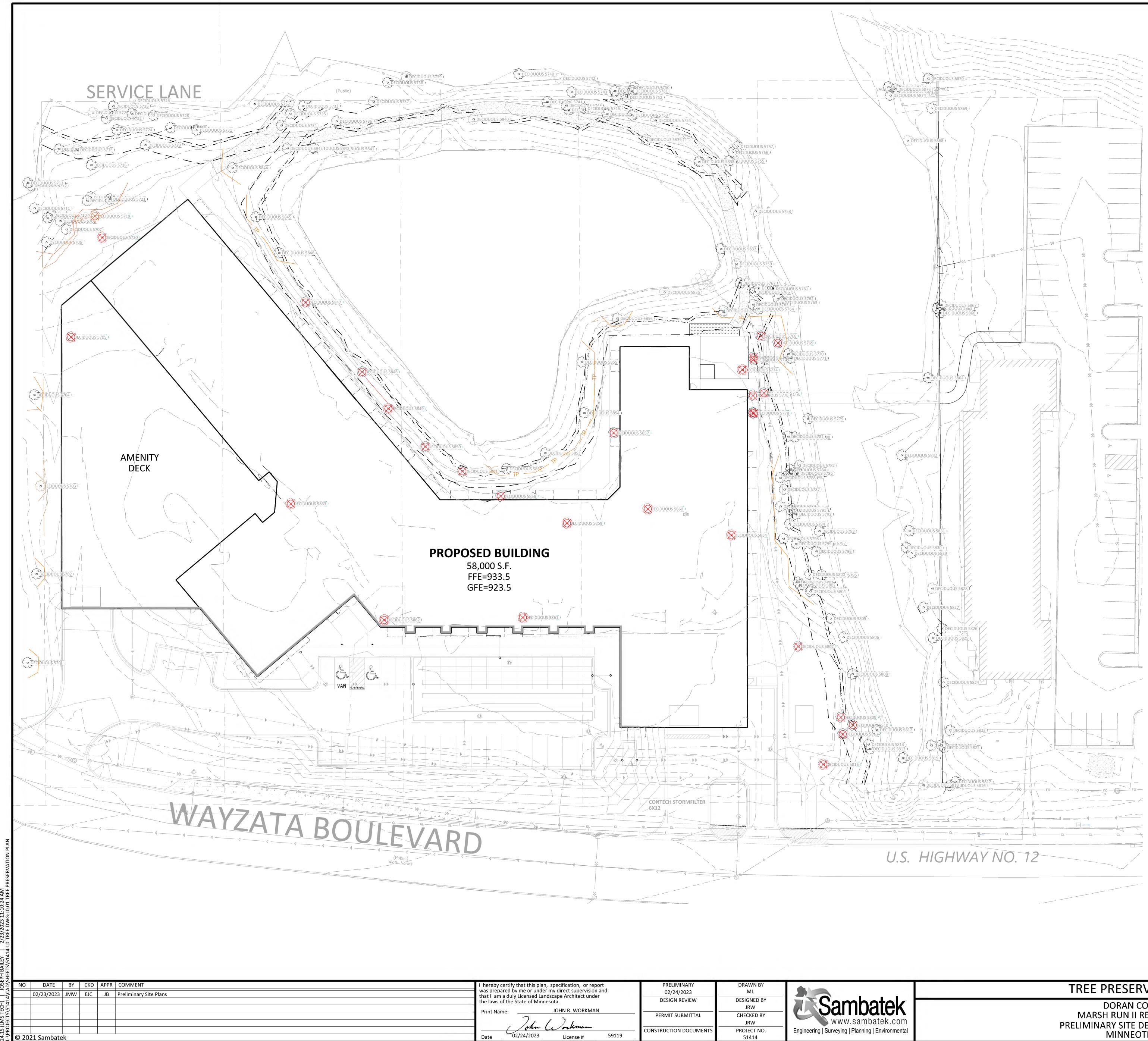



2/27/2023 10:26:45 AM	\51414\CAD\SHEETS\51414-C9-DETL.DWG:C9.01 DETAI
JOSEPH BAILEY	CAD\SHEETS\5141
ECH)	\51414\


				_	
NO	DATE	BY	CKD	APPR	COMMENT
	02/23/2023	JMW	EJC	JB	Preliminary Site Plans
C 20	021 Sambate	ek			


I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota. Print Name: JOSEPH BAILEY JOSEPH BAILEY Joseph Bailey Date 02/24/2023 License # 58645	PRELIMINARY 02/24/2023 DESIGN REVIEW PERMIT SUBMITTAL CONSTRUCTION DOCUMENTS	DRAWN BY JMW DESIGNED BY EJC CHECKED BY JB PROJECT NO. 51414	Sam WWW.S Engineering Surveying Pl
---	--	---	---





DETAILS **DORAN COMPANIES** MARSH RUN II REDEVELOPMENT PRELIMINARY SITE DEVELOPMENT PLANS MINNEOTNKA, MN

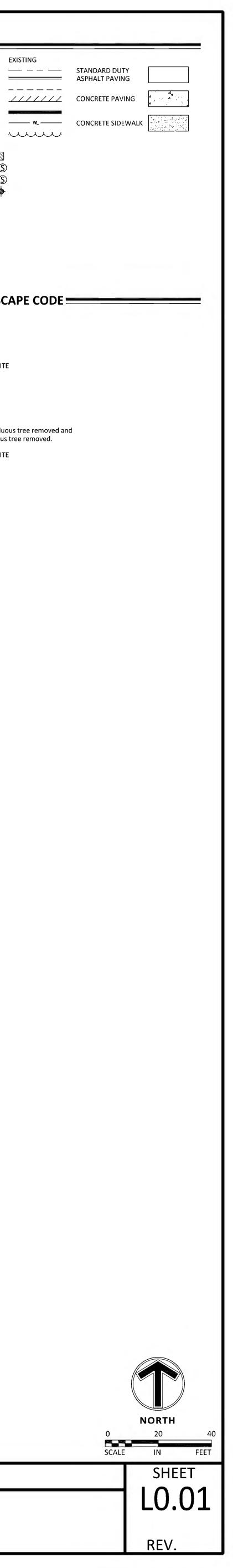
SHEET
C9.01
REV.

that I am a duly Licensed Landscape Architect under DESIGN REVIE the laws of the State of Minnesota. DESIGN REVIE Print Name: JOHN R. WORKMAN Ohn Onkman Dermit SUBMIT Date 02/24/2023 License # 59119	MITTAL JRW JRW JRW
--	--------------------------

PROPOSED PROPERTY LIMIT CURB & GUTTER _____ _ _ _ _ _ _ _ _ _ _ _ _ _ EASEMENT BUILDING RETAINING WALL WETLAND LIMITS TREELINE ____ LANDSCAPE EDING ____▶ _____ STORM SEWER SANITARY SEWER S-----S FORCEMAIN (SAN.) WATERMAIN YARDDRAIN LIMITS OF DISTURBANCE TREE TO BE REMOVED SIGN

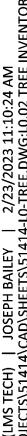
PIPE BOLLARD

RIPRAP


SIGNIFICANT TREE REMOVAL: ALLOWED REMOVAL: 50% of trees on site Two inches dsh replanted per tree removed. REMOVED: 16% OF SIGNIFICANT TREES ON SITE

HIGH PRIORITY TREE REMOVAL:

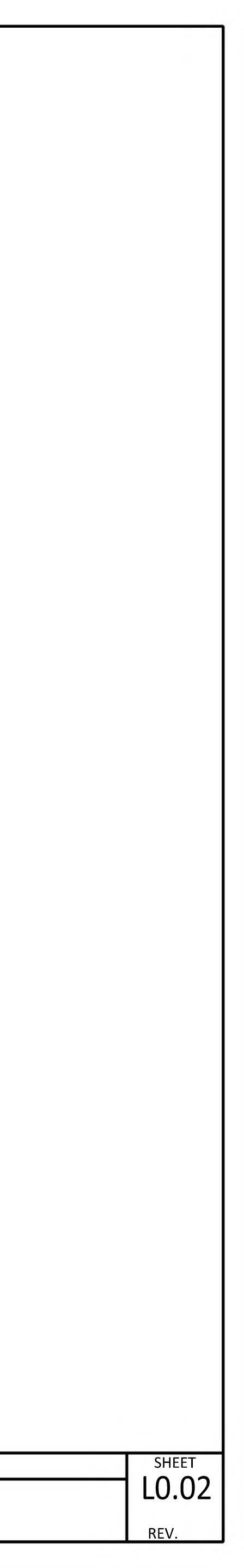
ALLOWED REMOVAL: 35% of trees on site One inch for each inch in diameter of a deciduous tree removed and one foot for each foot in height of a coniferous tree removed. REMOVED: 28% OF SIGNIFICANT TREES ON SITE

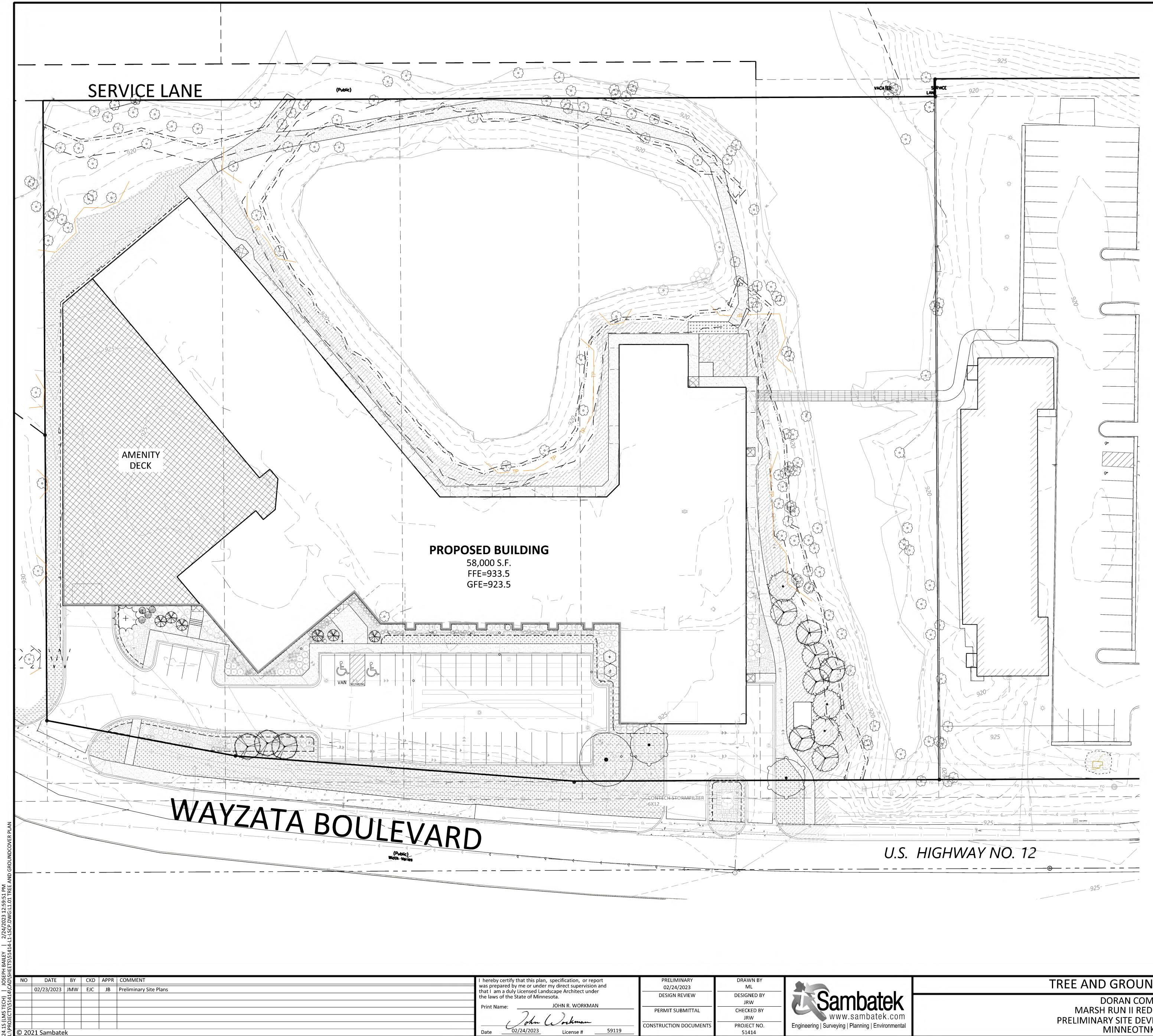

TREE PRESERVATION PLAN

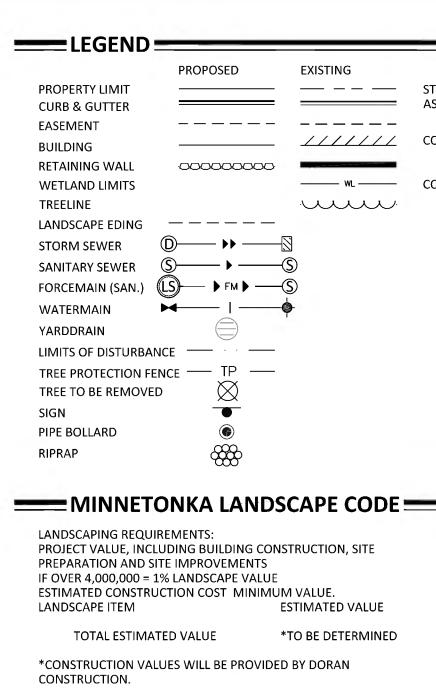
DORAN COMPANIES MARSH RUN II REDEVELOPMENT PRELIMINARY SITE DEVELOPMENT PLANS MINNEOTNKA, MN

A-Tag	DBH	B-Species	Status
5701	12	Green Ash (Fraxinus pennsylvaica)	Preserve
5702	16	Green Ash (Fraxinus pennsylvaica)	Preserve
5703	16	Green Ash (Fraxinus pennsylvaica)	Preserve
5704	20	Green Ash (Fraxinus pennsylvaica)	Preserve
5705	23	Green Ash (Fraxinus pennsylvaica)	Remove
5706	7	Box Elder (Acer negundo)	Preserve
5707	29	Eastern Cottonwood (Populus deltoides)	Preserve
5708	13	Eastern Cottonwood (Populus deltoides)	Preserve
5709	4	Box Elder (Acer negundo)	Preserve
5710	4	Box Elder (Acer negundo) Box Elder (Acer negundo)	Preserve
5711	8	Black Willow (Salix nigra)	Preserve
5712	<u> </u>	Box Elder (Acer negundo)	Preserve
5713 5714	9	Box Elder (Acer negundo)	Preserve
5715	11	Box Elder (Acer negundo)	Preserve
5716	23	Eastern Cottonwood (Populus deltoides)	Preserve
5717	17	Eastern Cottonwood (Populus deltoides)	Preserve
5718	13	Eastern Cottonwood (Populus deltoides)	Preserve
5719	31	Eastern Cottonwood (Populus deltoides)	Remove
5720	4	Eastern Cottonwood (Populus deltoides)	Remove
5721	4	Box Elder (Acer negundo)	Preserve
5722	5	Box Elder (Acer negundo)	Preserve
5723	9	Box Elder (Acer negundo)	Preserve
5724	8	Box Elder (Acer negundo)	Preserve
5725	14	Black Willow (Salix nigra)	Preserve
5726	9	Box Elder (Acer negundo)	Preserve
5727	10	Box Elder (Acer negundo)	Preserve
5728	10	Box Elder (Acer negundo)	Preserve
5729	6	Box Elder (Acer negundo)	Preserve
5730	15	Box Elder (Acer negundo)	Preserve
5731	9	Box Elder (Acer negundo)	Preserve
5732	4	Box Elder (Acer negundo)	Preserve
5733	34	Eastern Cottonwood (Populus deltoides)	Preserve
5734	21	Eastern Cottonwood (Populus deltoides)	Preserve
5735	16	Eastern Cottonwood (Populus deltoides)	Preserve
5736	15	Black Willow (Salix nigra)	Preserve
5737	42	Eastern Cottonwood (Populus deltoides)	Preserve
5738	24	Black Willow (Salix nigra) Black Willow (Salix nigra)	Preserve
5739	23	Eastern Cottonwood (Populus deltoides)	Preserve
5740 5741	26	Eastern Cottonwood (Populus deltoides)	Preserve Preserve
5741	13	Eastern Cottonwood (Populus deltoides)	Preserve
5743	14	Black Willow (Salix nigra)	Preserve
5744	13	Eastern Cottonwood (Populus deltoides)	Preserve
5745	11	Eastern Cottonwood (Populus deltoides)	Preserve
5746	15	Eastern Cottonwood (Populus deltoides)	Preserve
5747	17	Eastern Cottonwood (Populus deltoides)	Preserve
5748	12	Eastern Cottonwood (Populus deltoides)	Preserve
5749	7	Eastern Cottonwood (Populus deltoides)	Preserve
5750	5	Eastern Cottonwood (Populus deltoides)	Preserve
5751	15	Eastern Cottonwood (Populus deltoides)	Preserve
5752	14	Eastern Cottonwood (Populus deltoides)	Preserve
5753	15	Black Willow (Salix nigra)	Preserve
5754	19	Eastern Cottonwood (Populus deltoides)	Preserve
5755	27	Eastern Cottonwood (Populus deltoides)	Preserve
5756	6	American Elm (Ulmus americana)	Preserve
5757	5	American Elm (Ulmus americana)	Preserve
5758	16	Eastern Cottonwood (Populus deltoides)	Preserve
5759	26	Quaking Aspen (Populus tremuloides)	Preserve
5760	25	Eastern Cottonwood (Populus deltoides)	Preserve
5761	11	Box Elder (Acer negundo)	Preserve
5762	8	Box Elder (Acer negundo)	Preserve
5763	9	Box Elder (Acer negundo)	Preserve
5764	12	Eastern Cottonwood (Populus deltoides) Quaking Aspen (Populus tremuloides)	Preserve
5765	8	Quaking Aspen (Populus tremuloides)	Preserve
5766 5767	8	Quaking Aspen (Populus tremuloides)	Preserve
5768	23	Quaking Aspen (Populus tremuloides)	Preserve Remove
5769	12	Quaking Aspen (Populus tremuloides)	Remove
5770	12	Quaking Aspen (Populus tremuloides)	Preserve
5771	5	Quaking Aspen (Populus tremuloides)	Preserve
5772	4	Box Elder (Acer negundo)	Remove
5773	9	Box Elder (Acer negundo)	Remove
5774	12	Box Elder (Acer negundo)	Remove
5775	8	Green Ash (Fraxinus pennsylvaica)	Remove
5776	9	Box Elder (Acer negundo)	Remove
• •	-		
5777	8	Box Elder (Acer negundo)	Remove

5779	8	Box Elder (Acer negundo)	Preserve
5780	33	Eastern Cottonwood (Populus deltoides)	Preserve
5781	5	Box Elder (Acer negundo)	Preserve
5782	5	Box Elder (Acer negundo) Box Elder (Acer negundo)	Preserve
5783 5784	6	Black Willow (Salix nigra)	Preserve
5785	4	Box Elder (Acer negundo)	Preserve
5786	26	Eastern Cottonwood (Populus deltoides)	Preserve
5787	8	Box Elder (Acer negundo)	Preserve
5788	25	Eastern Cottonwood (Populus deltoides)	Preserve
5789	15	Eastern Cottonwood (Populus deltoides)	Preserve
5790	15	Eastern Cottonwood (Populus deltoides)	Preserve
5791	9	Box Elder (Acer negundo)	Preserve
5792	23	Eastern Cottonwood (Populus deltoides)	Preserve
5793	4	Box Elder (Acer negundo)	Preserve
5794	28	Eastern Cottonwood (Populus deltoides)	Preserve
5795	5	Box Elder (Acer negundo)	Preserve
5796	5	Box Elder (Acer negundo)	Preserve
5797	41	Eastern Cottonwood (Populus deltoides) Siberian Elm (Ulmus pumila)	Preserve
5798 5799	6 20	Eastern Cottonwood (Populus deltoides)	Preserve
5800	5	Box Elder (Acer negundo)	Preserve
5801	6	Box Elder (Acer negundo)	Preserve
5802	5	Box Elder (Acer negundo)	Preserve
5803	8	Box Elder (Acer negundo)	Preserve
5804	6	Box Elder (Acer negundo)	Preserve
5805	11	Box Elder (Acer negundo)	Preserve
5806	5	Box Elder (Acer negundo)	Preserve
5807	19	Green Ash (Fraxinus pennsylvaica)	Remove
5808	22	Box Elder (Acer negundo)	Preserve
5809	8	Green Ash (Fraxinus pennsylvaica)	Remove
5810	4	Box Elder (Acer negundo)	Remove
5811	9	Siberian Elm (Ulmus pumila)	Remove
5812	34	Eastern Cottonwood (Populus deltoides)	Preserve
5813	4	Green Ash (Fraxinus pennsylvaica) Box Elder (Acer negundo)	Preserve
5814	10 5	Box Elder (Acer negundo) Box Elder (Acer negundo)	Preserve
5815 5816	6	Green Ash (Fraxinus pennsylvaica)	Remove Preserve
5817	5	Green Ash (Fraxinus pennsylvaica)	Preserve
5818	5	Green Ash (Fraxinus pennsylvaica)	Preserve
5819	4	Box Elder (Acer negundo)	Preserve
5820	6	Green Ash (Fraxinus pennsylvaica)	Preserve
5821	8	Siberian Elm (Ulmus pumila)	Preserve
5822	22	Eastern Cottonwood (Populus deltoides)	Preserve
5823	32	Eastern Cottonwood (Populus deltoides)	Preserve
5824	14	Box Elder (Acer negundo)	Preserve
5825	8	Green Ash (Fraxinus pennsylvaica)	Preserve
5826	9	Green Ash (Fraxinus pennsylvaica)	Preserve
5827	8	Green Ash (Fraxinus pennsylvaica)	Preserve
5828	7	Box Elder (Acer negundo) Green Ash (Fraxinus pennsylvaica)	Preserve
5829	9	Green Ash (Fraxinus pennsylvaica)	Preserve
5830	14	Green Ash (Fraxinus pennsylvaica)	Preserve
5831 5832	14	Green Ash (Fraxinus pennsylvaica)	Preserve Preserve
5833	9	Green Ash (Fraxinus pennsylvaica)	Preserve
5834	12	River Birch (Betula nigra)	Remove
5835	5	Black Walnut (Juglans nigra)	Preserve
5836	8	Box Elder (Acer negundo)	Remove
5837	6	Green Ash (Fraxinus pennsylvaica)	Preserve
5838	13	Quaking Aspen (Populus tremuloides)	Preserve
5839	4	Box Elder (Acer negundo)	Preserve
5840	14	Box Elder (Acer negundo)	Preserve
5841	4	Box Elder (Acer negundo)	Preserve
5842	5	Box Elder (Acer negundo)	Preserve
5843	7	Green Ash (Fraxinus pennsylvaica)	Preserve
5844	21	Honey Locust (Gladitsia triacanthos)	Preserve
5845	22	Honey Locust (Gladitsia triacanthos)	Preserve
5846	22	Honey Locust (Gladitsia triacanthos) Honey Locust (Gladitsia triacanthos)	Preserve
5847 5848	26	Honey Locust (Gladitsia triacanthos)	Remove
5848 5849	28	Honey Locust (Gladitsia triacanthos)	Remove Remove
5849	27	Honey Locust (Gladitsia triacanthos)	Remove
5850	23	Honey Locust (Gladitsia triacanthos)	Remove
	16	Honey Locust (Gladitsia triacanthos)	Preserve
5852		Honey Locust (Gladitsia triacanthos)	Preserve
	23		
5852 5853 5854	23	Honey Locust (Gladitsia triacanthos)	Preserve
5853		Honey Locust (Gladitsia triacanthos) Honey Locust (Gladitsia triacanthos)	Preserve Preserve


NO DATE BY CKD APPR COMMENT 02/23/2023 JMW EJC JB Preliminary Site Plans	I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and	PRELIMINARY 02/24/2023	DRAWN BY ML	
	that I am a duly Licensed Landscape Architect under the laws of the State of Minnesota.	DESIGN REVIEW	DESIGNED BY JRW	Sam
	Print Name: JOHN R. WORKMAN	PERMIT SUBMITTAL	CHECKED BY JRW	
→ G ST ST © 2021 Sambatek	Ohn Orkman Date 02/24/2023 License # 59119	CONSTRUCTION DOCUMENTS	PROJECT NO. 51414	Engineering Surveying Planr

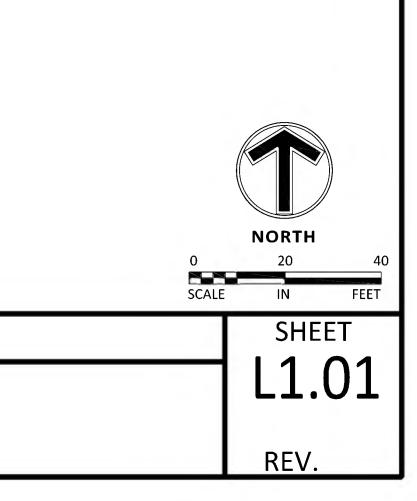

5858	16	River Birch (Betula nigra)	Remov
5859	8	Paper Birch (Betula papyrifera)	Remov
5860	11	Paper Birch (Betula papyrifera)	Remov
5861	12	River Birch (Betula nigra)	Remov
5862	28	Green Ash (Fraxinus pennsylvaica)	Remov
5863	22	River Birch (Betula nigra)	Remov
5864	7	Box Elder (Acer negundo)	Preserv
5865	36	Eastern Cottonwood (Populus deltoides)	Preserv
5866	8	American Elm (Ulmus americana)	Preserv
5867	6	Box Elder (Acer negundo)	Preserv
5868	7	Green Ash (Fraxinus pennsylvaica)	Preserv
5869	10	Box Elder (Acer negundo)	Preserv
5870	18	Box Elder (Acer negundo)	Preserv
5871	14	Box Elder (Acer negundo)	Preserv
5872	6	Green Ash (Fraxinus pennsylvaica)	Preserv
5873	7	Green Ash (Fraxinus pennsylvaica)	Preserv
5874	5	Green Ash (Fraxinus pennsylvaica)	Preserv

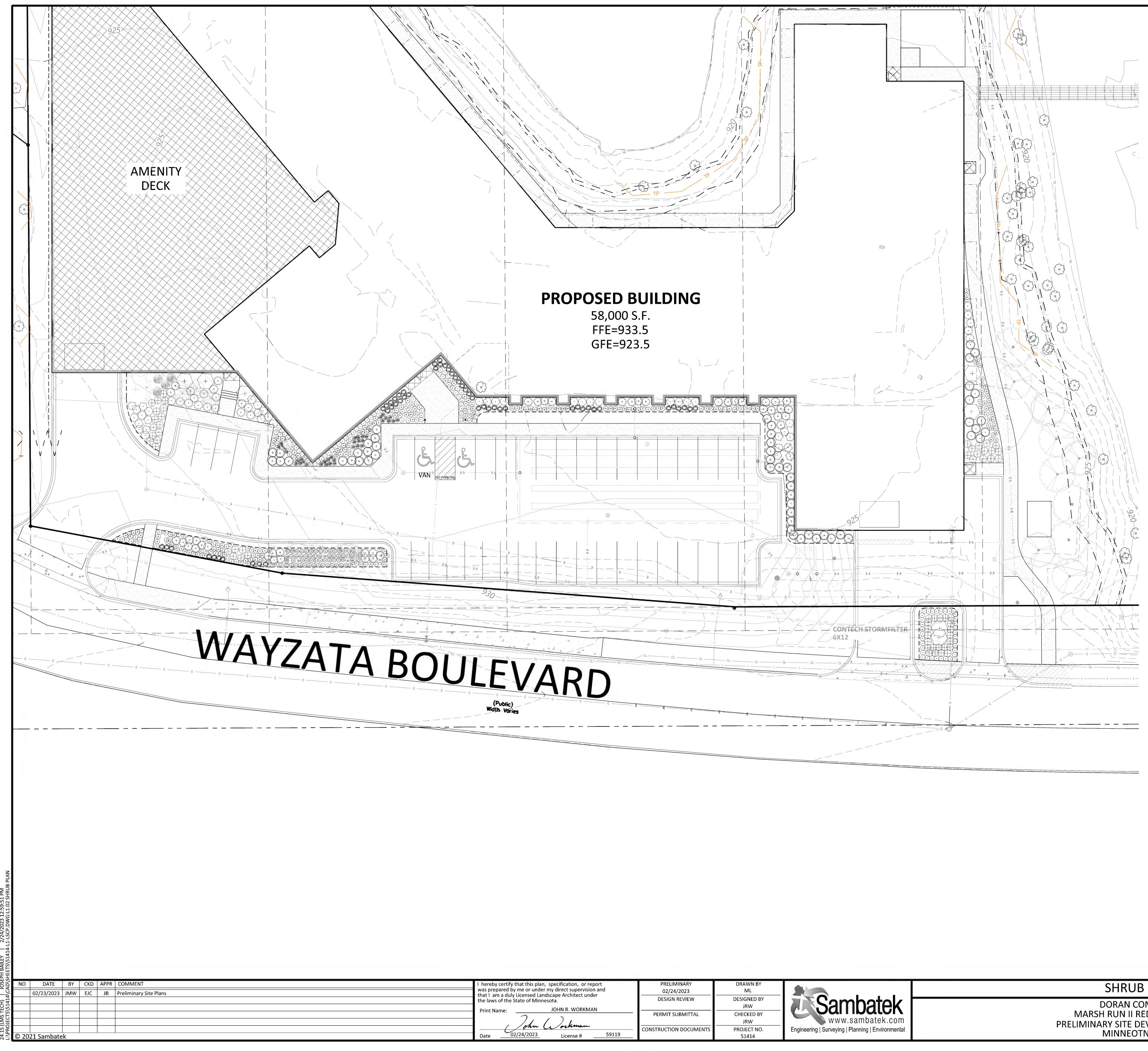

TREE INVENTORY

DORAN COMPANIES MARSH RUN II REDEVELOPMENT PRELIMINARY SITE DEVELOPMENT PLANS MINNEOTNKA, MN

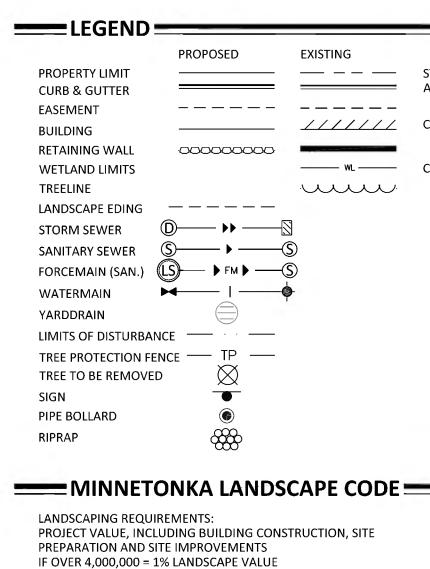
I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Landscape Architect under the laws of the State of Minnesota. Print Name: JOHN R. WORKMAN Date 02/24/2023 License #59119	PRELIMINARY 02/24/2023 DESIGN REVIEW PERMIT SUBMITTAL CONSTRUCTION DOCUMENTS	DRAWN BY ML DESIGNED BY JRW CHECKED BY JRW PROJECT NO. 51414	Engineering Surveying F
--	--	---	-----------------------------

PLANT SCHEDULE


TREES	CODE	BOTANICAL / COMMON NAME	CONT	CAL	SIZE	QTY
	SG	Acer freemanii `Sienna Glen` / Sienna Glen Maple	B & B	2.5"Cal		1
	DP	Betula platyphylla `Fargo` TM / Dakota Pinnacle Birch	B & B	2"Cal		6
\bigcirc	ІН	Gleditsia triacanthos `Imperial` / Imperial Honeylocust	B & B	2.5"Cal		2
+	RP	Quercus robur x warei`Long` / Regal Prince Oak	B & B	2.5"Cal		2
CONIFERS	CODE	BOTANICAL / COMMON NAME	CONT	CAL	SIZE	QT
}~~	BF	Abies balsamea / Balsam Fir	B & B		6`	1
\bigcirc	NS	Picea abies / Norway Spruce	В&В		6`	3
\bigcirc	тт	Thuja occidentalis `Techny` / Techny Arborvitae	B & B		8`	4
ORN. TREES	CODE	BOTANICAL / COMMON NAME	CONT	CAL	SIZE	QT
\bigotimes	сс	Malus x `Coaralburst` / Coralburst Crabapple	B & B	2"Cal		6
$\langle \rangle$	IL	Syringa reticulata `Ivory Silk` / Ivory Silk Japanese Tree Lilac	B & B	2"Cal		4
GROUND COVERS	CODE	BOTANICAL / COMMON NAME	CONT			
9/6/7.9/6/7.9 6/9/9/6/9/ //1/6/9/9/ //1/6/9/9/6/9/ 9/9/6/9/9/6/9/	ART TUR	Artificail Turf / X-Grass Pet Turf	Seed			
	34-262	MNDOT Seed Mix 34-262 / Wet Prairie	Seed			
	TUR HIG	Turf Sod Highland Sod / Sod	Sod			


TREE AND GROUNDCOVER PLAN

DORAN COMPANIES MARSH RUN II REDEVELOPMENT PRELIMINARY SITE DEVELOPMENT PLANS MINNEOTNKA, MN


KISTING 	STANDARD DUTY	
	ASPHALT PAVING	
///////	CONCRETE PAVING	a 4, a 4, a 4,
WL	CONCRETE SIDEWALK	

ESTIMATED VALUE

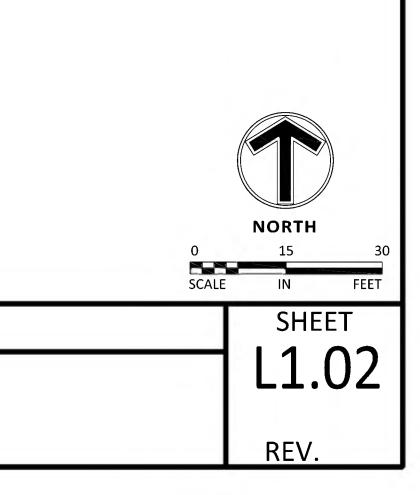
I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and	PRELIMINARY 02/24/2023	DRAWN BY ML	
that I am a duly Licensed Landscape Architect under			
the laws of the State of Minnesota.	DESIGN REVIEW	DESIGNED BY	Sorr
Print Name: JOHN R. WORKMAN		JRW	
	PERMIT SUBMITTAL	CHECKED BY	Guil
		JRW	www.s
Ohn Workman	CONSTRUCTION DOCUMENTS	PROJECT NO.	Engineering Surveying F
Date02/24/2023 License #59119		51414	5 5 7

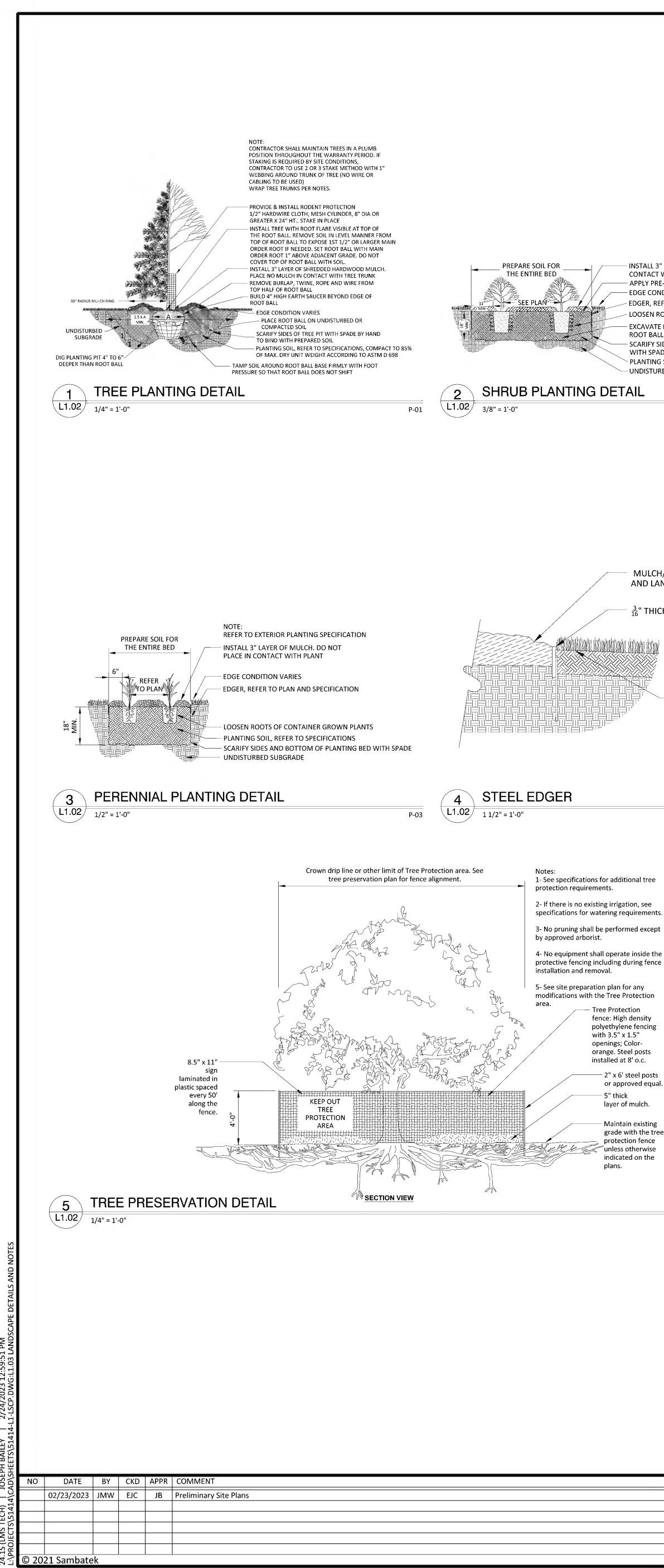
ESTIMATED CONSTRUCTION COST MINIMUM VALUE. LANDSCAPE ITEM TOTAL ESTIMATED VALUE

*CONSTRUCTION VALUES WILL BE PROVIDED BY DORAN CONSTRUCTION.

PLANT SCHEDULE

SHRUBS	CODE	BOTANICAL / COMMON NAME	CONT	QTY
\oplus	вн	Diervilla lonicera / Dwarf Bush Honeysuckle	5 gal	57
$\langle \cdot \rangle$	АН	Hydrangea arborescens `Annabelle` / Annabelle Smooth Hydrangea	5 gal	36
+	LL	Hydrangea paniculata `Limelight` TM / Limelight Hydrangea	5 gal	7
	ΓM	Juniperus chinensis `Mint Julep` / Mint Julep Juniper	5 gal	17
2010-10-10-10-10-10-10-10-10-10-10-10-10-	CJ	Juniperus sabina `Monna` / Calgary Carpet Juniper	5 gal	40
the second	FS	Sorbaria sorbifolia `Sem` / Sem Ash Leaf Spirea	5 gal	48
441000000 14 14 14 14 14 14 14 14 14 14 14 14 14	НА	Thuja occidentalis `Holmstrup` / Holmstrup Cedar	10 gal	12
GRASSES	CODE	BOTANICAL / COMMON NAME	CONT	QTY
State -	PDS	Sporobolus heterolepis / Prairie Dropseed	1 gal	53
PERENNIALS	CODE	BOTANICAL / COMMON NAME	CONT	QTY
\overline{ullet}	SBA	Allium x `Summer Beauty` / Summer Beauty Allium	1 gal	98
$\langle + \rangle$	PCF	Echinacea purpurea `Rubinstern` / Purple Coneflower	1 gal	63
×	BDL	Hemerocallis x `Baja` / Baja Daylily	1 gal	39
{;+;}	RSH	Hosta x `Regal Splendor` / Plantain Lily	1 gal	62
(+)	WLC	Nepeta x faassenii `Walkers Low` / Walkers Low Catmint	1 gal	117
(+)	BES	Rudbeckia fulgida `Goldstrum` / Black Eyed Susan	1 gal	38


SHRUB PLAN


DORAN COMPANIES MARSH RUN II REDEVELOPMENT PRELIMINARY SITE DEVELOPMENT PLANS MINNEOTNKA, MN

EXISTING		
	STANDARD DUTY ASPHALT PAVING	
///////	CONCRETE PAVING	۵ ۵ ۲
WL	CONCRETE SIDEWALK	

ESTIMATED VALUE

xxxxxxxx

l h	nereby certify that this plan, specification, or report	PRELIMINARY	DRAWN BY	A
	as prepared by me or under my direct supervision and at I am a duly Licensed Landscape Architect under	02/24/2023	ML	
	e laws of the State of Minnesota.	DESIGN REVIEW	DESIGNED BY	S Con
Dr	rint Name: JOHN R. WORKMAN		JRW	
		PERMIT SUBMITTAL	CHECKED BY	
	John Jockman		JRW	WWW.
—	02/24/2022	CONSTRUCTION DOCUMENTS		Engineering Surveying
Da	ate02/24/2023License #59119		51414	

- Tree Protection fence: High density polyethylene fencing with 3.5" x 1.5" openings; Colororange. Steel posts installed at 8' o.c. — 2" x 6' steel posts or approved equal. 5" thick layer of mulch. Maintain existing grade with the tree protection fence funless otherwise indicated on the plans.

FINISHED GRADE AND EDGE **CONDITION VARIES - SEE PLAN**

 $\frac{3}{16}$ " THICK STEEL EDGER (BLACK) W/ STAKE

MULCH/DECORATIVE ROCK PER PLAN AND LANDSCAPE NOTES

- APPLY PRE-EMERGENT HERBICIDE - EDGE CONDITION VARIES EDGER, REFER TO PLAN AND SPECIFICATION - LOOSEN ROOTS OF CONTAINER GROWN PLANTS - EXCAVATE PLANT BED MIN. 4" DEEPER THAN ROOT BALL HT. - SCARIFY SIDES AND BOTTOM OF PLANTING BED WITH SPADE PLANTING SOIL. REFER TO SPECIFICATIONS UNDISTURBED SUBGRADE

CONTACT W/ SHRUB STEM

- INSTALL 3" LAYER OF MULCH, DO NOT PLACE IN

P-06

P-04

P-02

6. PLANT MATERIALS TO BE INSTALLED PER PLANTING DETAILS.

COMPLETED IN THE IMMEDIATE AREA. MANUFACTURERS RECOMMENDED RATE PRIOR TO PLANT INSTALLATION.

PLANTING NOTES: 1. NO PLANTS SHALL BE INSTALLED UNTIL FINAL GRADING AND CONSTRUCTION HAS BEEN

SPECIFIED.

THE LANDSCAPE ARCHITECT.

COMPLETE THE WORK SHOWN ON THE PLAN.

MAINTAINED IN THIS MANNER WILL BE REJECTED.

SHALL BE RELOCATED IF DIRECTED BY THE LANDSCAPE ARCHITECT.

TO INSTALLATION.

PERIOD.

2571.31.2

- CONSTRUCTION TRAFFIC, STORAGE OF MATERIALS ETC. WITH 4' HT. ORANGE PLASTIC SAFETY 11. LONG-TERM STORAGE OF MATERIALS OR SUPPLIES ON-SITE WILL NOT BE ALLOWED. 12. CONTRACTOR SHALL REQUEST IN WRITING, A FINAL ACCEPTANCE INSPECTION.

UNSATISFACTORY BEFORE, DURING, OR AFTER INSTALLATION.

- FENCING ADEQUATELY SUPPORTED BY STEEL FENCE POSTS 6' O.C. MAXIMUM SPACING.
- CONTRACTOR TO VERIFY QUANTITIES SHOWN ON THE PLAN. 9. THE SPECIFICATIONS TAKE PRECEDENCE OVER THE PLANTING NOTES AND GENERAL NOTES. 10. EXISTING TREES AND SHRUBS TO REMAIN SHALL BE PROTECTED TO THE DRIP LINE FROM ALL
- BEGINNING OF WORK 8. THE PLAN TAKES PRECEDENCE OVER THE LANDSCAPE LEGEND IF DISCREPANCIES EXIST. QUANTITIES SHOWN IN THE PLANTING SCHEDULE ARE FOR THE CONTRACTOR'S CONVENIENCE.
- 6. THE LANDSCAPE CONTRACTOR SHALL COORDINATE THE PHASES OF CONSTRUCTION AND 7. THE CONTRACTOR SHALL REVIEW THE SITE FOR DEFICIENCIES IN SITE CONDITIONS WHICH MIGHT NEGATIVELY AFFECT PLANT ESTABLISHMENT, SURVIVAL OR WARRANTY, UNDESIRABLE SITE CONDITIONS SHALL BE BROUGHT TO THE ATTENTION OF THE LANDSCAPE ARCHITECT PRIOR TO
- REPLACED AT NO ADDITIONAL COST TO THE OWNER. 5. LOCATE AND VERIFY ALL UTILITIES, INCLUDING IRRIGATION LINES, WITH THE OWNER FOR PLANTING INSTALLATION WITH OTHER CONTRACTORS WORKING ON SITE.
- SHALL BE RESPONSIBLE FOR THE PROTECTION AND REPAIR OF ANY DAMAGES TO SAME. NOTIFY THE LANDSCAPE ARCHITECT OF ANY CONFLICTS TO FACILITATE PLANT RELOCATION.
- 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COMPLYING WITH ALL APPLICABLE CODES, REGULATIONS, AND PERMITS GOVERNING THE WORK. 4. THE CONTRACTOR SHALL PROTECT EXISTING ROADS, CURBS/GUTTERS, TRAILS, TREES, LAWNS AND SITE ELEMENTS DURING CONSTRUCTION. DAMAGE TO SAME SHALL BE REPAIRED AND/OR PROPRIETARY UTILITIES AND GOPHER STATE ONE CALL 48 HOURS BEFORE DIGGING. CONTRACTOR

- **GENERAL NOTES:** 1. THE CONTRACTOR SHALL INSPECT THE SITE AND BECOME FAMILIAR WITH THE EXISTING CONDITIONS RELATING TO THE NATURE AND SCOPE OF THE WORK. 2. THE CONTRACTOR SHALL VERIFY PLAN LAYOUT AND BRING TO THE ATTENTION OF THE LANDSCAPE ARCHITECT DISCREPANCIES WHICH MAY COMPROMISE THE DESIGN OR INTENT OF THE LAYOUT.

2. A GRANULAR PRE-EMERGENT HERBICIDE SHALL BE APPLIED TO ALL PLANT BEDS AT THE 3. ALL PLANTING STOCK SHALL CONFORM TO THE "AMERICAN STANDARD FOR NURSERY STOCK," ANSI-Z60, LATEST EDITION, OF THE AMERICAN ASSOCIATION OF NURSERYMEN, INC. AND SHALL

CONSTITUTE MINIMUM QUALITY REQUIREMENTS FOR PLANT MATERIALS. 4. OVERSTORY TREES SHALL BEGIN BRANCHING NO LOWER THAN 6' ABOVE PAVED SURFACES. 5. ALL PLANTS MUST BE HEALTHY, VIGOROUS MATERIAL, FREE OF PESTS AND DISEASE AND BE CONTAINER GROWN OR BALLED AND BURLAPPED AS INDICATED IN THE LANDSCAPE LEGEND.

7. ALL TREES MUST BE STRAIGHT TRUNKED AND FULL HEADED AND MEET ALL REQUIREMENTS 8. THE LANDSCAPE ARCHITECT RESERVES THE RIGHT TO REJECT ANY PLANTS WHICH ARE DEEMED

9. NO SUBSTITUTIONS OF PLANT MATERIAL SHALL BE ACCEPTED UNLESS APPROVED IN WRITING BY 10. ALL PLANT MATERIAL QUANTITIES, SHAPES OF BEDS AND LOCATIONS SHOWN ARE APPROXIMATE. CONTRACTOR SHALL BE RESPONSIBLE FOR COMPLETE COVERAGE OF ALL PLANTING BEDS AT

SPACING SHOWN AND ADJUSTED TO CONFORM TO THE EXACT CONDITIONS OF THE SITE. THE LANDSCAPE ARCHITECT SHALL APPROVE THE STAKING LOCATION OF ALL PLANT MATERIALS PRIOR 11. ALL PLANTING AREAS MUST BE COMPLETELY MULCHED AS SPECIFIED.

12. MULCH: DOUBLE SHREDDED HARDWOOD MULCH, CLEAN AND FREE OF NOXIOUS WEEDS OR OTHER DELETERIOUS MATERIAL, IN ALL MASS PLANTING BEDS AND FOR TREES, UNLESS INDICATED AS ROCK MULCH ON DRAWINGS. SUBMIT SAMPLE TO LANDSCAPE ARCHITECT PRIOR TO DELIVERY ON-SITE FOR APPROVAL. DELIVER MULCH ON DAY OF INSTALLATION. USE 3" FOR SHRUB BEDS, TREE RINGS, AND 3" FOR PERENNIAL/GROUND COVER BEDS, UNLESS OTHERWISE DIRECTED. 13. BUILDING MAINTENANCE STRIP: WHERE NO LANDSCAPE PLANTING BEDS EXIST ADJACENT TO A

BUILDING FOUNDATION, CONTRACTOR SHALL INSTALL A DECORATIVE ROCK MAINTENANCE STRIP PER PLAN. DECORATIVE ROCK SHALL BE 1"-3" DRESSER TRAP ROCK, GREY IN COLOR.

AND FOR EVERGREENS MOVED ANYTIME. APPLY AS PER MANUFACTURER'S INSTRUCTION. ALL EVERGREENS SHALL BE SPRAYED IN THE LATE FALL FOR WINTER PROTECTION DURING WARRANTY 16. WRAP ALL SMOOTH-BARKED DECIDUOUS TREES PLANTED IN THE FALL PRIOR TO DECEMBER 1 AND

REMOVE WRAPPING AFTER MAY 1. TREE WRAPPING MATERIAL SHALL BE WHITE TWO-WALLED PLASTIC SHEETING APPLIED FROM TRUNK FLARE TO THE FIRST BRANCH. 17. ALL DECIDUOUS, PINE, AND LARCH PLANTINGS SHALL RECEIVE RODENT PROTECTION PER MNDOT

18. PLANTING SOIL FOR TREES, SHRUBS AND GROUND COVERS: FERTILE FRIABLE LOAM CONTAINING A LIBERAL AMOUNT (4% MIN.) OF HUMUS AND CAPABLE OF SUSTAINING VIGOROUS PLANT GROWTH. IT SHALL COMPLY WITH MNDOT SPECIFICATION 3877 TYPE B SELECT TOPSOIL. MIXTURE SHALL BE FREE FROM HARDPACK SUBSOIL, STONES, CHEMICALS, NOXIOUS WEEDS, ETC. SOIL MIXTURE SHALL HAVE A PH BETWEEN 6.1 AND 7.5 AND 10-0-10 FERTILIZER AT THE RATE OF 3 POUNDS PER CUBIC YARD. IN PLANTING BEDS INCORPORATE THIS MIXTURE THROUGHOUT THE ENTIRE BED IN A 6" LAYER AND

ROTO-TILLING IT INTO THE TOP 12" OF SOIL AT A 1:1 RATIO.ANY PLANT STOCK NOT PLANTED ON DAY OF DELIVERY SHALL BE HEELED IN AND WATERED UNTIL INSTALLATION. PLANTS NOT 19. CONTRACTOR SHALL BE RESPONSIBLE TO VERIFY THAT EACH EXCAVATED TREE AND SHRUB PIT WILL PERCOLATE PRIOR TO INSTALLING PLANTING MEDIUM AND PLANTS. THE CONTRACTOR

SHALL FILL THE BOTTOM OF SELECTED HOLES WITH SIX INCHES OF WATER AND CONFIRM THAT THIS WATER WILL PERCOLATE WITHIN A 24-HOUR PERIOD. IF THE SOIL AT A GIVEN AREA DOES NOT DRAIN PROPERLY. A PVC DRAIN OR GRAVEL SUMP SHALL BE INSTALLED OR THE PLANTING 20. ALL PLANTS SHALL BE GUARANTEED FOR TWO COMPLETE GROWING SEASONS (APRIL 1

NOVEMBER 1), UNLESS OTHERWISE SPECIFIED. THE GUARANTEE SHALL COVER THE FULL COST OF **NATIVE SEED MIX NOTES:** REPLACEMENT INCLUDING LABOR AND PLANTS. 21. CONTRACTOR SHALL NOTIFY THE LANDSCAPE ARCHITECT AT LEAST 3 DAYS PRIOR TO PLANNED DELIVERY. THE CONTRACTOR SHALL NOTIFY THE LANDSCAPE ARCHITECT AT LEAST 24 HOURS IN ADVANCE OF BEGINNING PLANT INSTALLATION. 22. SEASONS/TIME OF PLANTING AND SEEDING: NOTE: THE CONTRACTOR MAY ELECT TO PLANT IN OFF-SEASONS ENTIRELY AT HIS/HER RISK. 4/1 - 6/1; 9/21 - 11/1

22.1. POTTED PLANTS: 22.2. DECIDUOUS /B&B: 22.3. EVERGREEN POTTED PLANTS: 22.4. EVERGREEN B&B: 22.5. TURF/LAWN SEEDING:

4/1 - 6/1; 9/21-11/1 4/1 - 5/1; 9/21 - 11/1 4/1 - 6/1; 7/20 - 9/20 4/15 - 7/20; 9/20-10/20 23. MAINTENANCE SHALL BEGIN IMMEDIATELY AFTER EACH PORTION OF THE WORK IS IN PLACE. PLANT MATERIAL SHALL BE PROTECTED AND MAINTAINED UNTIL THE INSTALLATION OF THE

4/1 - 6/1; 9/21 - 11/1

PLANTS IS COMPLETE, INSPECTION HAS BEEN MADE, AND PLANTINGS ARE ACCEPTED EXCLUSIVE OF THE GUARANTEE. MAINTENANCE SHALL INCLUDE WATERING, CULTIVATING, MULCHING, REMOVAL OF DEAD MATERIALS, RE-SETTING PLANTS TO PROPER GRADE AND KEEPING PLANTS IN A PLUMB POSITION. AFTER ACCEPTANCE, THE OWNER SHALL ASSUME MAINTENANCE RESPONSIBILITIES. HOWEVER, THE CONTRACTOR SHALL CONTINUE TO BE RESPONSIBLE FOR KEEPING THE TREES PLUMB THROUGHOUT THE GUARANTEE PERIOD.

24. ANY PLANT MATERIAL WHICH DIES, TURNS BROWN, OR DEFOLIATES (PRIOR TO TOTAL ACCEPTANCE OF THE WORK) SHALL BE PROMPTLY REMOVED FROM THE SITE AND REPLACED WITH MATERIAL OF THE SAME SPECIES, QUANTITY, AND SIZE AND MEETING ALL LANDSCAPE LEGEND SPECIFICATIONS. 25. WATERING: MAINTAIN A WATERING SCHEDULE WHICH WILL THOROUGHLY WATER ALL PLANTS

ONCE A WEEK. IN EXTREMELY HOT, DRY WEATHER, WATER MORE OFTEN AS REQUIRED BY INDICATIONS OF HEAT STRESS SUCH AS WILTING LEAVES. CHECK MOISTURE UNDER MULCH PRIOR TO WATERING TO DETERMINE NEED. CONTRACTOR SHALL MAKE THE NECESSARY ARRANGEMENTS FOR WATER.

TURF NOTES:

22.6. NATIVE MIX SEEDING:

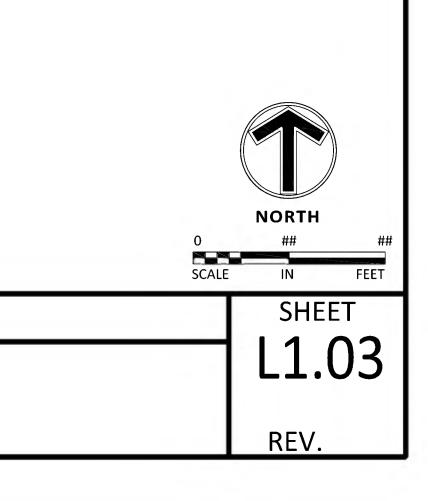
TURF ESTABLISHMENT SHALL BE ACCOMPLISHED IN ACCORDANCE WITH THE PROVISIONS OF THE MN/DOT 2105 AND 2575 EXCEPT AS MODIFIED BELOW: 1. ALL AREAS TO RECEIVE SOD SHALL ALSO RECEIVE 6" OF TOPSOIL PRIOR TO

- INSTALLING SOD. TOPSOIL SHALL BE FREE OF TREE ROOTS, STUMPS, BUILDING MATERIAL, AND TRASH, AND SHALL BE FREE OF STONES LARGER THAN 1¹/₂" INCHES IN ANY DIMENSION. 2. WHERE SOD ABUTS PAVED SURFACES, FINISHED GRADE OF SOD/SEED SHALL BE HELD 1" BELOW
- SURFACE ELEVATION OF TRAIL, SLAB, CURB, ETC. . SOD SHALL BE LAID PARALLEL TO THE CONTOURS AND SHALL HAVE STAGGERED JOINTS. ON
- SLOPES STEEPER THAN 3:1 OR IN DRAINAGE SWALES, SOD SHALL BE STAKED SECURELY. TURF ON ALL OTHER AREAS DISTURBED BY CONSTRUCTION SHALL BE RESTORED BY SEEDING. MULCHING AND FERTILIZING. SEED MIXTURE NO.25-121 WILL BE PLACED AT THE RATE OF 65 POUNDS PER ACRE.
- ALL DISTURBED AREAS TO BE TURF SEEDED, ARE TO RECEIVE 6" TOP SOIL, SEED, MULCH, AND WATER UNTIL A HEALTHY STAND OF GRASS IS OBTAINED. FOR SLOPES STEEPER THAN 3:1 OR IN DRAINAGE SWALES INSTALL EROSION CONTROL BLANKET.
- 6. ALL DISTURBED AREAS TO RECEIVE NATIVE SEED, ARE TO RECEIVE PLANTING SOIL, SEED, MULCH, AND WATER UNTIL A HEALTHY STAND OF GRASS IS OBTAINED. FOR SLOPES STEEPER THAN 3:1 OR IN DRAINAGE SWALES INSTALL EROSION CONTROL BLANKET.

GENERAL TREE SPECIFICATIONS:

- 1. ALL STREET AND PARKING LOT TREES SHALL BE LIMBED UP TO THE FOLLOWING HEIGHTS: 1.1. 2" CAL. TREES: LOWEST BRANCH 6' HT. 1.2. 3" CAL.+ TREES: LOWEST BRANCH 7' HT.
- TREE CANOPY WIDTH SHALL BE RELATIVE TO HEIGHT/CALIPER OF TREE AND TYPE OF TREE. 2.1. 1" CALIPER/6-8' HT: 3-4' WIDTH MIN.
- 2.2. 2" CALIPER/12-14' HT: 4-5' WIDTH MIN. 2.3. 3" CALIPER/14-16' HT: 6-7' WIDTH MIN.
- 3. CANOPY TREES SHALL NOT HAVE CO-DOMINATE LEADERS IN LOWER HALF OF TREE CROWN. 14. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL MULCHES AND PLANTING SOIL QUANTITIES TO 4. ALL TREES SHALL HAVE SYMMETRICAL OR BALANCED BRANCHING ON ALL SIDES OF THE TREE.
- . TREES SHALL NOT BE TIPPED PRUNED. 15. USE ANTI-DESICCANT (WILTPRUF OR APPROVED EQUAL) ON DECIDUOUS PLANTS MOVED IN LEAF 6. TREES SHALL BE FREE OF PHYSICAL DAMAGE FROM SHIPPING AND HANDLING. DAMAGED TREES SHALL BE REJECTED.
 - 7. SUMMER DUG TREES SHALL HAVE ROOTBALL SIZE INCREASED BY 20% 8. TREES WHICH EXCEED RECOMMENDED CALIPER TO HEIGHT RELATIONSHIP SHALL BE REJECTED.

IRRIGATION NOTES:


- IRRIGATION SYSTEM TO BE DESIGN/BUILD. CONTRACTOR TO SUBMIT SHOP DRAWINGS FOR APPROVAL OF SYSTEM LAYOUT PRIOR TO INSTALLATION. 2. ALL SOD TO RECEIVE SPRAY OR ROTOR IRRIGATION HEADS WITH MINIMUM DESIGN OF 1"
- **IRRIGATION PER WEEK.**
- ALL PLANT BEDS TO RECEIVE DRIP LINE IRRIGATION , WITH A MINIMUM DESIGN OF .25" **IRRIGATION PER WEEK.**
- . CONTRACTOR TO INSTALL A TOTAL OF 4 QUICK COUPLERS AT THE CORNERS OF THE PROPERTY. A 2.5" TYPE K SOURCE PIPE IS PROVIDED BY MECHANICAL.

LOW MAINTENANCE FESCUE NOTES: DURING GROWING SEASON NEVER MOW SHORTER THAN 3.5 INCHES, PREFERRED MAINTENANCE

- IS MOW ONCE PER MONTH AT 5" HEIGHT DO NOT USE HIGH NITROGEN FERTILIZER ON FESCUE LAWN
- OVERSEED THIN.BARE SPOTS IN FALL
- 4. ALWAYS USE SHARP BLADE WHEN MOWING TO AVOID TEARING LEAF BLADE 5. SET MOWER TO 3" FOR BAGGING AND MOWING IN LATE FALL AFTER GROWING SEASON

- ESTABLISHMENT AND YEAR ONE: MOW THREE(3) TIMES FIRST YEAR ON 30-DAY INTERVALS TO A HEIGHT BETWEEN FIVE AND EIGHT INCHES. DO NOT USE FERTILIZERS. SPOT TREAT INVASIVE WOODY PLANTS OR HAND WEED INDIVIDUAL NOXIOUS WEEDS.
- YEAR TWO: PERFORM ONE MOWING BETWEEN MID-JUNE AND MID-AUGUST. SPOT SPRAY WEEDS AS NEEDED WHERE THEY ARE ESPECIALLY DOMINATE. 3. YEAR THREE (AND BEYOND): CUT ONE TIME PER YEAR AS A CLEAN UP PROCEDURE (EITHER IN
- EARLY MAY OR LATE NOVEMBER). PRESCRIBED BURNS MAY BE USED AS WELL IN PLACE OF MOWING. CHECK LOCAL REGULATIONS AND PERMIT PROCEDURES.

nbatek .sambatek.con | Planning | Environmenta LANDSCAPE DETAILS AND NOTES

MARSH RUN II REDEVELOPMENT SITE & BUILDING PLANS: FEBRUARY 24, 2023

Project Description

Doran is proposing a new, high-quality, Class A luxury apartment project that will be complimentary to the Birke, in the 394 Corridor regional area. This project is precisely what the City of Minnetonka is seeking the 2040 Comprehensive Plan for the 394 Corridor regional area. This project will add life and vitality to the north side of 394, enhancing walkability, providing an additional housing option for existing residents, attracting the next generation of residents to the City, and supporting the nearby commercial uses that exist in the neighborhood today. The project will contain an affordable housing component mixed with marketrate apartments to contribute to the City's need for attainable and affordable housing. The project will provide ample and convenient visitor parking, including 40 dedicated short term and visitor stalls located in a surface lot directly in front of the building's main entrance along Wayzata Boulevard. In addition, this project will add to the City's parks and trail system, with a pedestrian bridge and walking trail loop that preserve most of the site's significant trees and landscape features. This is a unique opportunity to redevelop a 4.33 acre blighted and underutilized site to create an exceptional project that will contribute to the City's goals for affordable housing, tree preservation, and the connection of parks and trails.

The redevelopment will include razing an existing office building on the site and constructing a 197-unit apartment project, with 10% of the units affordable to households earning 60% of the area median income levels, and 10% of the units affordable to households earning 80% of the area median income levels. The building will contain a mix of alcove, 1 bed, 2 bed, and 3 bed apartments with active gathering spaces for residents and guest located on the first and second levels of the building. The project will consist of a concrete podium parking garage with approximately 304 parking stalls on two levels—one level at grade along Wayzata Boulevard and a basement level that walks out to the North side of the site. The parking garage will contain all of the resident parking for the project, with an additional 40 surface parking spaces along Wayzata Boulevard near the main entrance for short-term guest and delivery parking. Above level one the building will be wood framed construction for the apartments and an open, elevated amenity deck will have several outdoor amenities. Amenities throughout the project will include: Business center; Flex work space; Clubroom and game room; entertainment suite with rooftop patio; Game simulator; Exercise facility; Group exercise room; Outdoor pool; Outdoor spa; Grilling stations; Outdoor fire pits; Pet spa; Heated underground parking; Bocce ball, and outdoor seating. The natural site features contribute to the City and the overall amenities, with a walking trail loop along the North wetlands, a sidewalk to Wayzata Boulevard, and a pedestrian bridge trail connection to the existing park trail to the Landings and retail center to the East.

This project has significant wetlands on the North and East Sides of the property that will remain to visually buffer the existing residential area to the North and East sides of the site. The proposed project "fits", both visually and in terms of use, massing and density, and it properly addresses the goals and concerns identified by the City and residential neighbors. For the building's exterior architecture, the project is thoughtfully designed around neighborhood characteristics and concept plan feedback. From the community and City feedback during the open house and sketch review process, the exterior design seeks to be contextual, timeless, and a unique contribution to the City of Minnetonka's architecture. To lower the visual scale of the building and relate to the more traditional architecture to the North, the overall mass is broken up and articulated into 5 distinct pieces with a base, middle, and top to the building form. Historical inspiration is made modern with traditional cornice, frames, and book ends translated into clean black lines, panelized forms, and black accents. To add to the existing sense of place, the material palate will compliment the existing retail center and the Birke apartment building with a mountain shadow velour brick base, white and earth tone lap siding, and black cementitious panels and windows. To clearly call out the building entrances, black brick is used at the vehicle and pedestrian entrances; and a copper canopy on the center black brick form clearly identifies the main visitor and pedestrian entrance to the building.

In summary, this project will significantly contribute to the City's goals and neighborhood's needs with: high quality & affordable housing; a meaningful contribution to the City's parks and trails system; preserved significant trees; ample & convenient visitor parking; and a contextual & timeless architecture that's unique to the City of Minnetonka.

2/24/2023 3:10:41 PM

Site Map

Project Team

Owner/Developer: Doran RE Partners, LLC 7803 Glenroy Road Bloomington, MN 55439 Ph: 952-288-2000

Architect: Doran Architects, LLC 7803 Glenroy Road Bloomington, MN 55439 Ph: 952-288-2000

<u>Civil:</u> Sambatek 12800 Whitewater Drive Suite 300 Minneapolis, MN 55430 PH: 763-843-0420

Landscape: Sambatek 12800 Whitewater Drive Suite 300 Minneapolis, MN 55430 PH: 763-843-0420

<u>Contractor:</u> Doran Construction Company, LLC 7803 Glenroy Road Bloomington, MN 55439 Ph: 952-288-2000

<u>Attorney:</u> Doran Companies Attn: Legal Department 7803 Glenroy Road Bloomington, MN 55439 Ph: 952-288-2000

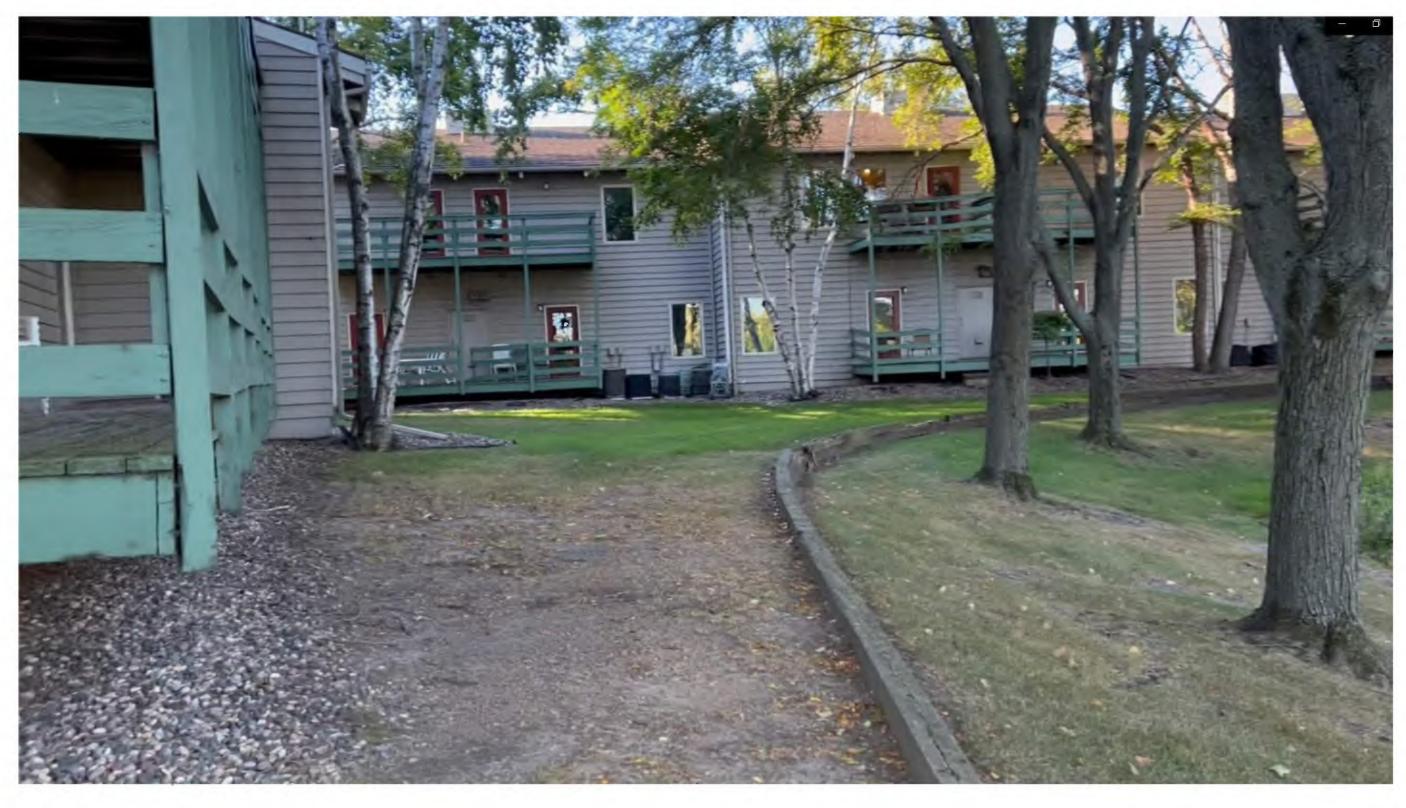
Surveyor: Sambatek 12800 Whitewater Drive Suite 300 Minneapolis, MN 55430 PH: 763-843-0420

Count WITS 1 BED 113 2 BED 44 3 BED 44 4 COVE 31 3 TOTAL 31 3 BED 44 4 COVE 31 3 TOTAL 31 3 BED 44 4 COVE 31 3 TOTAL 43.070 SF 1 BED 113 1 BED 114	
UNITS PT LEVEL 34.300 SF 1 AED 113 111 111 2 BED 114 2 LEVEL 43.070 SF 3 RED0 13 131 131 1 RED0 113 131 131 3 RED0 13 131 131 3 RED0 13 131 131 14 LEVEL 43.070 SF 1 G RAND TOTAL 2327,040 SF 40.004 PROPOSED SITE PLAN A 1.01 LEVEL 1 SLOWER LEVEL 102 LEVEL 104 LEVEL FLOOR PLAN 3 SURAGE ADA 2 2 200 OVERALE BUILDING ELEVATIC 3 SURAGE ADA 2 2 200 OVERALE BUILDING ELEVATIC 3 SURAGE ADA 107 12 2 2 2 SURAGE ADA 2 2 2 0 VERALE BUILDING ELEVATIC 3 SURAGE ADA	
I BED 113 SEDS 13 ACCOVE 31 STUDIO 0 TOTAL 197 UNITS BEDS 13 LEVEL 1 BED 113 2 BED 43,070 SF 1 BED 133 2 BED 28 3 BED 16 LEVEL 40.01 EXISTING SITE PLAN A 0.02 CONTEXT SITE PLAN A 0.04 PROPOSED SITE PLAN A 0.04 PROPOSED SITE PLAN A 0.04 PROPOSED SITE PLAN A 0.05 EXISTING SITE PLAN A 0.04 PROPOSED SITE PLAN A 0.05 EXISTING SITE PLAN A 0.06 EVEL L 43,070 SF L6 LEVEL 42,450 SF GRAND TOTAL 2307,040 SF L6 LEVEL 42,460 SF GRAND TOTAL 307,040 SF L6 LEVEL 42,460 SF GRAND TOTAL 307,040 SF LEVEL 1 ALANA 2 SUMACE ANA 2 SUMACE ANA 2 LEVEL 1 ALANA 2 LEV	
2 BED 44 3 BED 9 ALCOVE 30,070 SF 1 SL CVEL 43,070 SF 1 BED 13 1 DOW 0 1 DOWER LEVEL 43,070 SF 1 DOWER LEVEL FLOOR PLAN ALCOVE 31 SUMACE IONA 40 LEVEL T. TOTAL 30 LEVEL T. MOACE 30 SUMACE IONA 20 1 DOWERALE BULDING ELEVATIC Construction Type: 1A Podium ILEVEL T TOTAL 14 LEVE	
ALCOVE 31 STUDIO 0 TOTAL 197 UNITS BEDS 14 LEVEL 43,070 SF L5 LEVEL 43,070 SF L5 LEVEL 43,070 SF L5 LEVEL 42,450 SF GRAND TOTAL: 327,040 SF L6 LEVEL 42,450 SF GRAND TOTAL: 327,040 SF L6 LEVEL 42,450 SF GRAND TOTAL: 327,040 SF L6 LEVEL 42,450 SF BUILDIOR PLAN A 1.01 LEVEL 1 FLOOR PLAN A 1.02 LEVEL 2 FLOOR PLAN A 1.04 LEVEL 4 FLOOR PLAN A 1.04 LEVEL 5 FLOOR PLAN A 1.04 LEVEL 4 FLOOR PLAN A 1.04 LEVEL 4 FLOOR PLAN A 1.04 LEVEL 5 FLOOR PLAN A 1.04 LEVEL 5 FLOOR PLAN A 1.04 LEVEL 4 FLOOR PLAN A 1.04 LEVEL 4 FLOOR PLAN A 1.04 LEVEL 5 FLOOR PLAN A 2.00 OVERALL BUILDING ELEVATIC A 3.00 EXTERIOR RENDERING A 3.01 EXTERIOR RENDERING A 3.02 EXTERIOR RENDERING A 3.04 EXTERIOR RENDERING A 3.00 EXTERIOR SCONDITIONS C 3.01 SITE FLAN C 3.02 FIRE TRUCK TURNING MOVEN C 4.01 GRADING PLAN C 4.02 GRADING NOTES C 6.01 UTILITY PLAN C 6.02 UTILITY NOTES C 9.01 DETALS L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
TOTAL 197 UNITS BEDS 13 1 BED 13 2 BED 22 ALCOVE 31 STUDIO 3 PARKING SURFACE STANDARD SURFACE STANDARD 30 SURFACE TOTAL 28 SURFACE TOTAL 20 SURFACE TOTAL 20 SURFACE TOTAL 20 SURFACE TOTAL 40 LEVEL P1 COMPACT 9 LEVEL P1 COMPACT 3 LEVEL 1 TOTAL 145 LEVEL 1 TOTAL 145 LEVEL 1 TOTAL 30 EVEL 1 TOTAL 30 EVEL 1 TOTAL 30 LEVEL 1 TOTAL 30	
BEDS 1 BED 113 2 BED 113 3 BED 27 ALCOVE 31 STUDKO 0 TOTAL 280 BEDS PARKING SURFACE STANDARD SURFACE COMPACT 8 SURFACE COMPACT 8 SURFACE TOTAL 40 LEVEL P1 COMPACT 9 LEVEL P1 COMPACT 3	
1 BED 3 COVE 13 3 COVE 2 BED 3 COVE 23 3 COVE 2 SUPACE STANDARD SURFACE SCOMPACT 30 3 COVE SURFACE SCOMPACT 3 3 COVE SURFACE COMPACT 3 3 COVE SURFACE TOTAL 40 40 Construction Type: 1A Podium IIIA Above Podium IIIA Above Podium (W Automatic SprinklerSystem Per 2018 MNSBC Chapter 9) LEVEL 19 TANDARD 107 LEVEL 100ARCT 0 4 3.00 EXTERIOR RENDERING A 3.00 LEVEL 19 TOTAL 119 TOTAL 304 PARKING SPACES	
ALCOVE 31 STUDIO 0 TOTAL 299 BEDS PARKING SURFACE COMPACT 3 SURFACE TOTAL 40 LEVEL P1 STANDARD 133 LEVEL P1 COAPACT 3 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES	
TOTAL 228 BEDS PARKING SURFACE STANDARD 30 SURFACE STANDARD 30 SURFACE STANDARD 133 SURFACE TOTAL 40 LEVEL PI STANDARD 133 LEVEL PI STANDARD 133 LEVEL PI STANDARD 107 LEVEL PI STANDARD 107 LEVEL 1 STANDARD 107 LEVEL 1 STANDARD 107 LEVEL 1 OOMPACT 9 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES	
SURFACE STANDARD 30 SURFACE COMPACT 8 SURFACE COMPACT 8 SURFACE TOTAL 40 LEVEL PI COMPACT 9 LEVEL 1 TOTAL 145 LEVEL 1 TOTAL 145 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES	
SURFACE STANDARD 30 SURFACE COMPACT 8 SURFACE ADA 2 SURFACE TOTAL 40 LEVEL PI STANDARD 133 LEVEL PI STANDARD 133 LEVEL PI COMPACT 9 MEXACE SprinklerSystem Per 2018 MNSBC Chapter 9) Per 2018 MNSBC Chapter 9) A 3.01 EXTERIOR RENDERING A 3.02 EXTERIOR RENDERING A 3.03 EXTERIOR RENDERING A 3.04 EVEL 1ADA 3 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES	
SURFACE ADA 2 SURFACE TOTAL 40 LEVEL P1 STANDARD 133 LEVEL P1 STANDARD 133 LEVEL P1 STANDARD 3 LEVEL P1 STANDARD 3 LEVEL P1 TOTAL 145 LEVEL 1 STANDARD 107 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES VITAL 304 PARKING SPACES Construc	NS
LEVEL P1 STANDARD 133 LEVEL P1 COMPACT 9 LEVEL P1 TOTAL 145 LEVEL P1 TOTAL 145 LEVEL P1 TOTAL 145 LEVEL 1 STANDARD 107 LEVEL 1 COMPACT 9 LEVEL 1 COMPACT 9 LEVEL 1 COMPACT 9 LEVEL 1 ADA 3 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES C2.01 EXISTING CONDITIONS C2.01 EXISTING CONDITIONS C3.02 FIRE TRUCK TURNING MOVEN C3.02 FIRE TRUCK TURNING MOVEN C3.02 GRADING PLAN C3.02 GRADING PLAN C3.02 GRADING PLAN C4.01 GRADING PLAN C4.02 GRADING PLAN C4.01 GRADING PLAN C4.02 GRADING NOTES C6.01 UTILITY PLAN C6.02 UTILITY NOTES C9.01 DETAILS L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
LEVEL P1 COMPACT 9 LEVEL P1 ADA 3 LEVEL P1 TOTAL 145 LEVEL 1 STANDARD 107 LEVEL 1 COMPACT 9 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES EVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES EVEL 1 TOTAL 119 TOTAL COMPACT 9 LEVEL 1 TOTAL 119 TOTAL 100 LEVEL 1 TOTAL 119 LEVEL 1 TOTAL 119 LEVEL 1 TOTAL 119 LEVEL 1 TOTAL 119 TOTAL COMPACT 9 LEVEL 1 COMPACT 9 L	
LEVEL 1 STANDARD 107 LEVEL 1 COMPACT 9 LEVEL 1 ADA 3 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES	,
LEVEL 1 COMPACT 9 LEVEL 1 ADA 3 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES C2.01 EXISTING CONDITIONS C3.01 SITE PLAN C3.02 FIRE TRUCK TURNING MOVEN C4.01 GRADING PLAN C4.02 GRADING NOTES C6.01 UTILITY PLAN C6.02 UTILITY NOTES C9.01 DETAILS L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
LEVEL 1 COMPACT 9 LEVEL 1 ADA 3 LEVEL 1 TOTAL 119 TOTAL 304 PARKING SPACES A 3.04 EXTERIOR RENDERING A 4.00 SHADOW STUDIES C2.01 EXISTING CONDITIONS C3.01 SITE PLAN C3.02 FIRE TRUCK TURNING MOVEN C4.01 GRADING PLAN C4.02 GRADING PLAN C4.02 GRADING NOTES C6.01 UTILITY PLAN C6.02 UTILITY NOTES C9.01 DETAILS L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
TOTAL 304 PARKING SPACES A 4.00 SHADOW STUDIES C2.01 EXISTING CONDITIONS C3.01 SITE PLAN C3.02 FIRE TRUCK TURNING MOVEN C4.01 GRADING PLAN C4.02 GRADING NOTES C6.01 UTILITY PLAN C6.02 UTILITY NOTES C9.01 DETAILS L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
C2.01 EXISTING CONDITIONS C3.01 SITE PLAN C3.02 FIRE TRUCK TURNING MOVEN C4.01 GRADING PLAN C4.02 GRADING NOTES C6.01 UTILITY PLAN C6.02 UTILITY NOTES C9.01 DETAILS L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
C3.01 SITE PLAN C3.02 FIRE TRUCK TURNING MOVEN C4.01 GRADING PLAN C4.02 GRADING NOTES C6.01 UTILITY PLAN C6.02 UTILITY NOTES C9.01 DETAILS L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
C3.02 FIRE TRUCK TURNING MOVEN C4.01 GRADING PLAN C4.02 GRADING NOTES C6.01 UTILITY PLAN C6.02 UTILITY NOTES C9.01 DETAILS L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
C4.01GRADING PLANC4.02GRADING NOTESC6.01UTILITY PLANC6.02UTILITY NOTESC9.01DETAILSL0.01TREE PRESERVATION PLANL0.02TREE INVENTORY	
C4.02GRADING NOTESC6.01UTILITY PLANC6.02UTILITY NOTESC9.01DETAILSL0.01TREE PRESERVATION PLANL0.02TREE INVENTORY	1ENT
C6.01UTILITY PLANC6.02UTILITY NOTESC9.01DETAILSL0.01TREE PRESERVATION PLANL0.02TREE INVENTORY	
C6.02UTILITY NOTESC9.01DETAILSL0.01TREE PRESERVATION PLANL0.02TREE INVENTORY	
C9.01 DETAILS L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
L0.01 TREE PRESERVATION PLAN L0.02 TREE INVENTORY	
L0.02 TREE INVENTORY	
L1.01 TREE AND GROUND COVER P	_AN
L1.02 SHRUB PLAN	
L1.03 LANDSCAPE DETAILS AND NO	TES
LEADER CONTRACTOR DATA	
	1

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

TITLE SHEET


2/24/2023 3:10:41 PM

VIEW FROM NW CORNER

STREET VIEW FROM SE CORNER

VIEW FROM NE CORNER

STREET VIEW FROM SW CORNER

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

EXISTING SITE PHOTOS

2/24/2023 3:10:41 PM

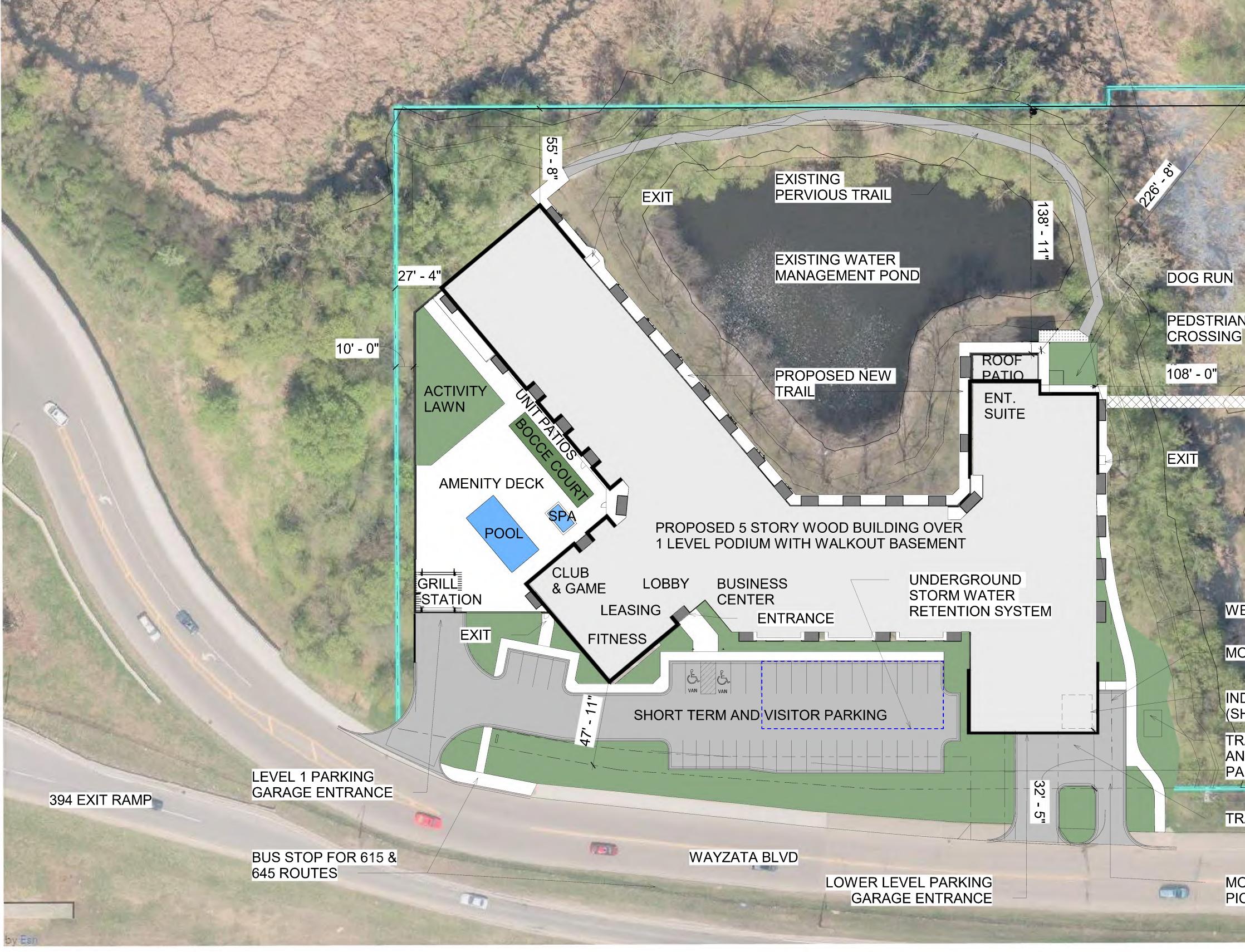
MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

CONTEXT SITE PLAN

2/24/2023 3:10:41 PM

MARSH RUN II REDEVELOPMENT


11816 Wayzata Blvd, Minnetonka

EXISTING SITE PLAN

2/24/2023 3:33:44 PM

DISTANCE TO EXISTING CONDOMINIUM

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

PROPOSED SITE PLAN


\$2022 Hennepin County - All Rights I

PROPERTY LINE HEDI PROPOSED NEW TRAIL CONNECTION PEDSTRIAN WETLAND (1) (1990) EXISTING OFFICE COMMERCIAL 10 ROAD WETLAND EDGE AND BUFFER FAIRFIELD MOVE IN PAD INDOOR TRASH STAGING (SHOWN HATCHED) TRANSFORMER AND GENERATOR PAD AREA TRASH STAGING PAD MOVE IN AND TRASH 0.50 PICK UP ENTRANCE

THE REAL

2/24/2023 3:10:47 PM

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

LOWER LEVEL FLOOR PLAN

MOVE IN AND TRASH PICK UP ENTRANCE

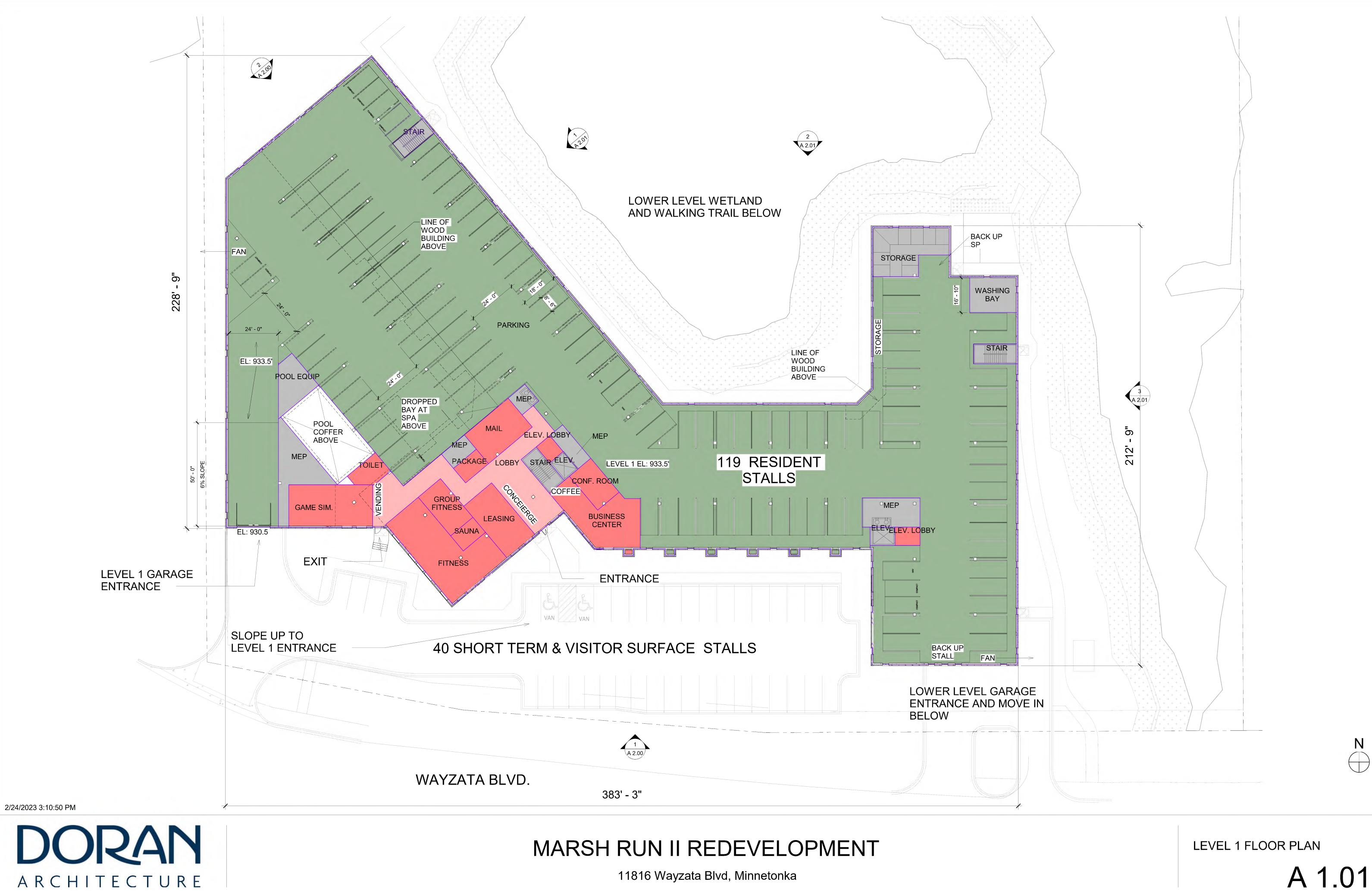
TRASH STAGING PAD

TRANSFORMER AND GENERATOR PAD AREA

INDOOR TRASH STAGING

MOVE IN PAD

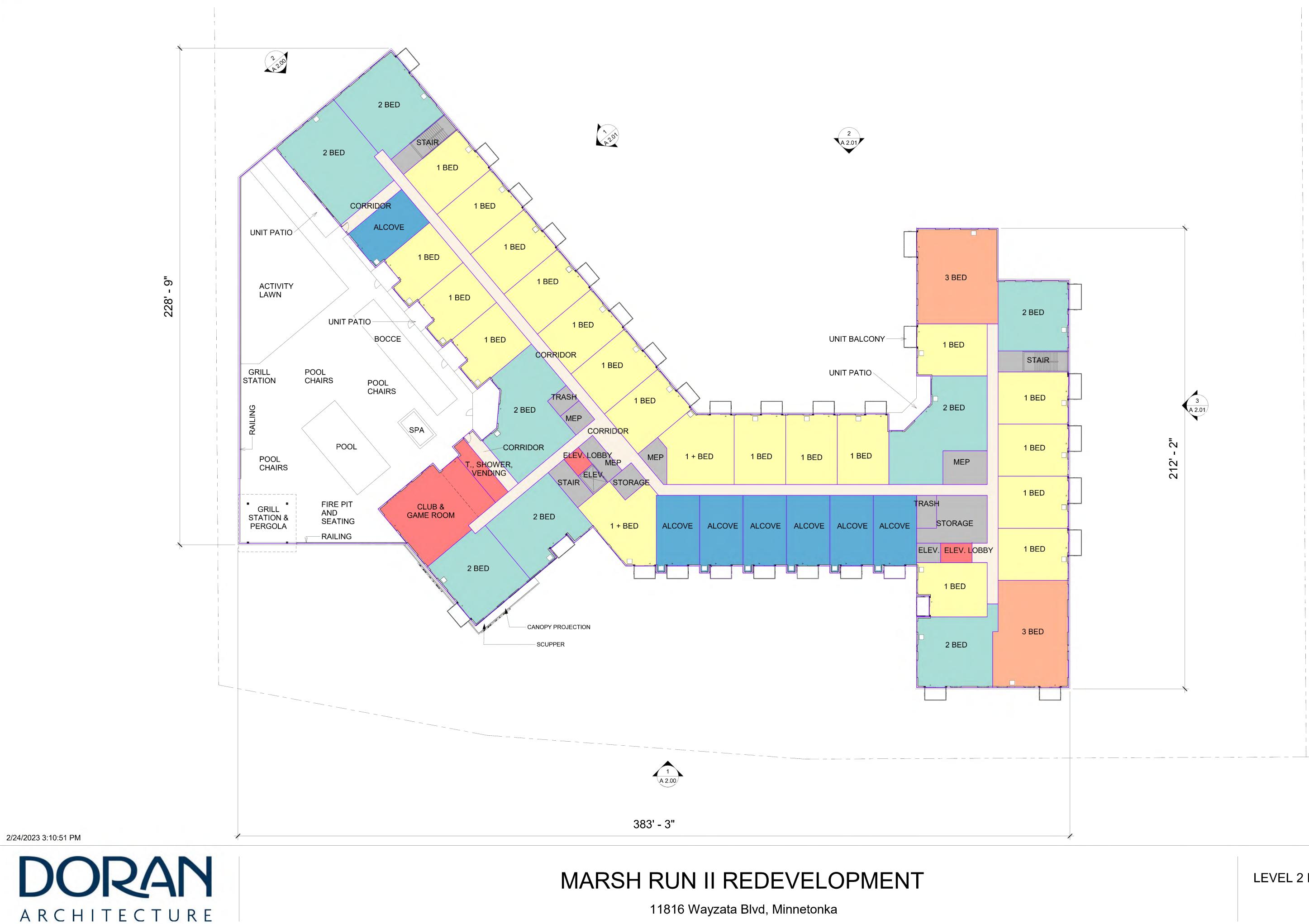
WETLAND EDGE AND BUFFER


EXIT

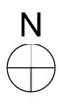
3 A 2.01

PROPERTY LINE

PEDSTRIAN WETLAND


CROSSING

11816 Wayzata Blvd, Minnetonka



Ν

2/24/2023 3:10:53 PM

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

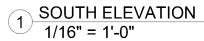

LEVELS 3, 4, & 5 FLOOR PLAN

2/24/2023 3:10:54 PM

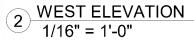
MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

ROOFTOP PATIO OVERLOOKING

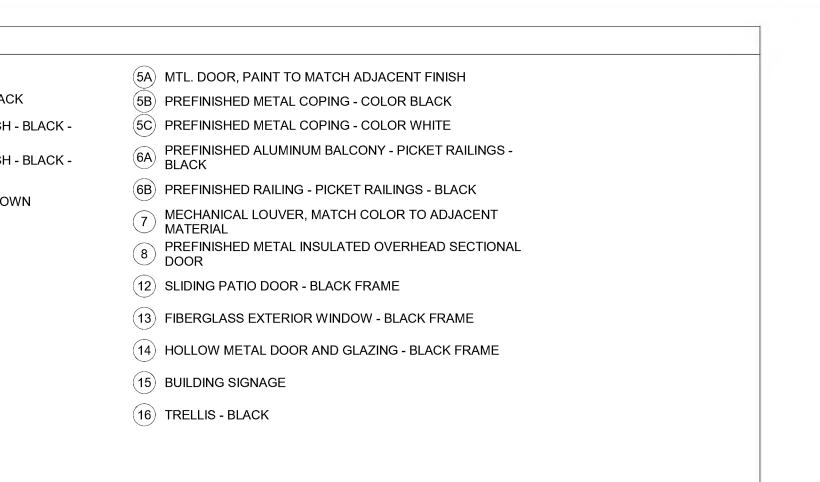


A 1.04


LEVEL 6 FLOOR PLAN

ARCHITECTURE

2/24/2023 3:10:59 PM



(1A) STONE VENEER

- (2A) PRECAST CONCRETE, INLAYED THIN BRICK BLACK
- 2B PRECAST CONCRETE, EXPOSED PRECAST FINISH BLACK 25% SANDBLASTED
- 2C PRECAST CONCRETE, EXPOSED PRECAST FINISH BLACK 75% SANDBLASTED
- (2D) PRECAST CONCRETE, INLAYED THIN BRICK BROWN
- (3A) METAL PANEL COPPER COLOR
- (3B) METAL PANEL CORNICE BLACK
- (4A) CEMINTITIOUS LAP SIDING WHITE
- (4B) CEMINTITIOUS LAP SIDING BLACK (4C) CEMINTITIOUS LAP SIDING - BROWN
- (4D) CEMINTITIOUS PANELS WHITE
- (4E) CEMINTITIOUS PANELS BLACK

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

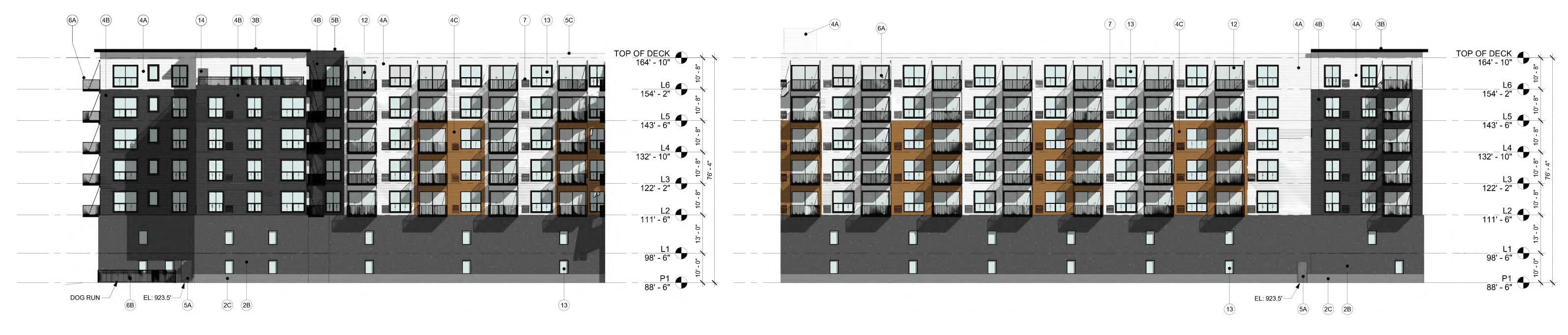
1/16" = 1'-0"

0' 8' - 0" 16' - 0"

ELEVATIONS

OVERALL BUILDING

32' - 0"

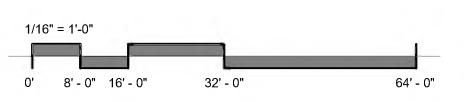

64' - 0"

A 2.00

2/24/2023 3:11:01 PM

2 NORTH ELEVATION 1/16" = 1'-0"

3 EAST ELEVATION 1/16" = 1'-0"



1 NORTH ELEVATION - ANGLED 1/16" = 1'-0"

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

OVERALL BUILDING ELEVATIONS A 2.01

2/24/2023 3:11:01 PM

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

EXTERIOR RENDERING

2/24/2023 3:11:01 PM

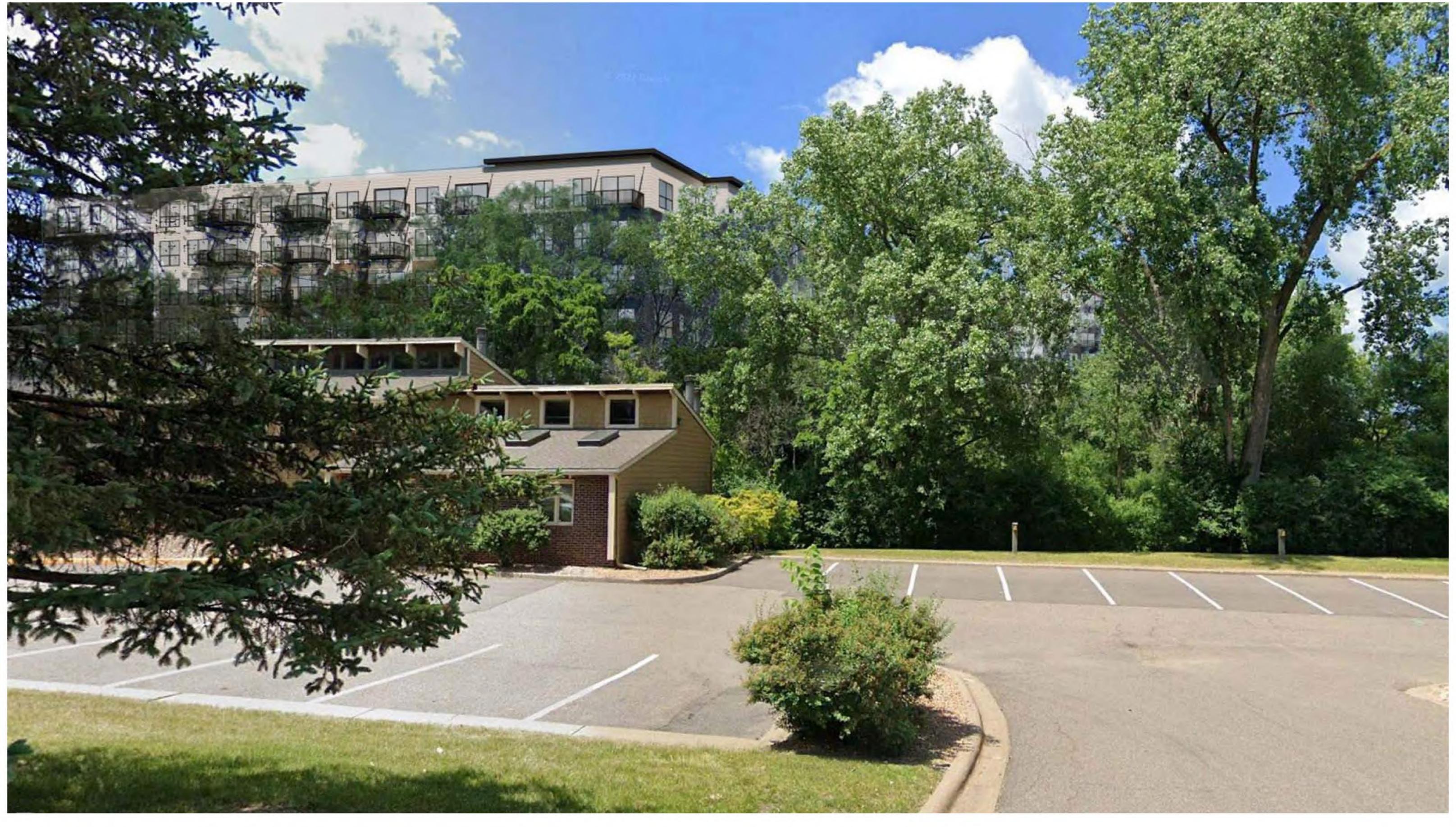
MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

2/24/2023 3:11:01 PM

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka


2/24/2023 3:11:01 PM

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

2/24/2023 3:11:02 PM

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

9 AM

MAR

21ST

SEPT

2/24/2023 3:11:02 PM

DORAN ARCHITECTURE 12 PM

3 PM

MARSH RUN II REDEVELOPMENT

11816 Wayzata Blvd, Minnetonka

6 PM

SHADOW STUDIES

PRELIMINARY STORMWATER MANAGEMENT PLAN

Marsh Run II

11900 Wayzata Blvd Minnetonka, MN

> Prepared By: Sambatek February 24, 2023

Contents

Project Introduction	.2
Soil Classification	.2
Existing Conditions	.3
Proposed Conditions	.3
Rate Control	.4
Water Quality	.5
Volume Reduction	.6
Emergency Overflow	.7
Stormwater System Operations & Maintenance	.7
Erosion & Sediment Control	.7
Summary	.7

Project Introduction

The Marsh Run II project is proposed by Doran Development, LLC and includes redevelopment of the existing Marsh Run Offices. The project site is located at 11900 Wayzata Boulevard in Minnetonka, Minnesota and is within the jurisdiction of the Bassett Creek Watershed Management Commission (BCWMC). The proposed redevelopment will result in the construction of one multifamily apartment complex with associated parking lots, sidewalks, and utility improvements. The Marsh Run II redevelopment will meet the stormwater design requirements of the City of Minnetonka, BCWMC, and MPCA through construction of a treatment train involving one underground detention facility and Manufactured Treatment Devices. The design requirements for the site are as follows:

- Rate control requirement: proposed nonlinear projects creating one of more acres of new and/or fully reconstructed impervious surfaces much manage stormwater runoff such that the peak flow rates leaving the site are equal to or less than the existing rate leaving the site for the 1-, 2-, 10-, and 100-year events based on Atlas 14 precipitation (City, Watershed)
- Volume control requirement: proposed nonlinear development/redevelopment projects which create one of more acres of new and/or fully reconstructed impervious surfaces shall capture and retain onsite 1.1 inches of runoff from new and/or fully reconstructed impervious surfaces (City, Watershed).
 - If the performance goal is not feasible and/or is not allowed, project proposer must implement flexible treatment options from the BCWMC Design Sequence Flow Chart and City's Stormwater Management Design Guidelines.
- Water quality requirements: for sites where the volume reduction goal is unfeasible, project proposers must utilize the Design Sequence Flow Chart to review Flexible Treatment Options (FTO) to satisfy water quality control (City, Watershed).
 - \circ The site conditions for the proposed location result in FTO #2 applying to the site.
 - FTO #2 includes providing volume abstraction to the maximum extent practicable and providing 60% annual phosphorous removal from site runoff.
- Provide maintenance of wetland hydrology in accordance with wetland Manage 2 classification requirements.

Soil Classification

Boring logs were completed by Braun Intertec on October 17, 2022. These logs showed existing soils onsite consist of fill (SM, SC, CL) from elevations 0-11' below ground surface and lean clay (CL) from 7-54' below ground surface. These soils are hydrologic soil group (HSG) D and unsuitable for infiltration. Water was observed at elevations of 12-40' below ground surface. Please see the complete borings logs included in the appendices. A complete geotechnical evaluation will be completed along with the final plans.

Existing Conditions

The existing project area consists of three buildings, parking lots, and one existing wetland. Existing impervious onsite includes office buildings along with parking lots and sidewalks for a total of 1.54 acres of impervious surfaces. Ground cover consists of trees and grass surrounding the wetland. There are no existing stormwater management facilities onsite. There is one existing outlet control structure which conveys flow from the onsite wetland offsite to the north.

In existing conditions, the majority of site runoff flows into onsite storm sewers(1E) and directly into the existing wetland (2E). A portion of pervious runoff from the perimeter of the site flows offsite to a larger existing wetland (3E) located north of the site, and the remainder of the site discharges south to Wayzata Boulevard (4E).

EXISTING AREAS & CURVE NUMBERS				
Subcatchment Area (acres) Pervious CN				
1E	1.86	80		
2E	1.19	79		
3E	0.65	79		
4F	0.20	80		

A summary of the existing areas and curve numbers is outlined below. Please see the appendices for existing drainage maps and models.

Proposed Conditions

The proposed redevelopment project will disturb approximately 2.65 acres of the site and result in 0.43 acres of net new impervious surface. Stormwater management facilities proposed for the site include a treatment train with underground detention to provide rate control and a manufactured water quality treatment device to provide water quality treatment for the required abstraction volume. A second proprietary device will provide water quality treatment for one area of impervious runoff which bypasses the detention pipes. There is no volume abstraction proposed onsite due to site constraints such as HSG D soils and proximity to existing wetlands. The proposed treatment train will provide water quality treatment to an equivalent volume which would be abstracted given more favorable existing site conditions.

Runoff from the proposed building and the majority of the parking lot will be routed to the treatment train before ultimately discharging to the existing wetland onsite (1S). One garage ramp will route through a second proprietary device before discharging to the existing wetland (5S). The wetland will also receive a portion of direct runoff from the site area surrounding it (2S). The perimeter of the site will continue to discharge north (3S) to another wetland offsite in maintenance of existing drainage patterns. A portion of the front of the site will continue to discharge directly onto Wayzata Boulevard (4S) as in existing conditions.

A summary of the proposed areas and curve numbers is outlined below. Please see the appendices for existing drainage maps and models.

PROPOSED AREAS & CORVE NOMBERS				
Subcatchment Area Pervious CN				
1S	1.83	80		

PROPOSED AREAS & CURVE NUMBERS

2S	1.09	80
3S	0.59	79
4S	0.25	80
5S	0.15	80

Rate Control

BCWMC requires proposed nonlinear projects creating one of more acres of fully reconstructed impervious surfaces much manage stormwater runoff such that the peak flow rates leaving the site are equal to or less than the existing rate leaving the site for the 2-, 10-, and 100-year events. The City of Minnetonka requires submittals show the existing and proposed 1-, 2-, 10-, and 100-year stormwater runoff volume and rate analysis. Runoff calculations were performed in HydroCAD using the Dynamic Storage Indicator method and MSE-3 distribution with Atlas 14 rainfall data for Hennepin County. Sub catchments with time of concentration greater than 7 minutes were calculated using sheet flow and shallow concentrated flow. Stormwater discharges from the proposed site to the north to an offsite wetland and south to Wayzata Boulevard. The results of runoff rate comparison and summarized in the tables below and detailed calculations can be found in the appendices.

DESIGN RAINFALL EVENTS		
Storm Event	(in)	
1-Year	2.48	
2-Year	2.86	
10-Year	4.26	
100-Year	7.32	

EXISTING MAXIMUM RATE OF RUNOFF (CFS)

Storm Event	To Wayzata	To Onsite Wetland	To Offsite Wetland	Total Existing
	Blvd (node 4E)	(node Wtld EXS inflow)	(reach 1R)	(reach 2R)
1-Year	0.46	7.36	0.72	<u>1.07</u>
2-Year	0.57	8.97	0.97	<u>1.40</u>
10-Year	0.99	15.06	1.96	<u>2.73</u>
100-Year	1.91	28.61	4.33	<u>5.82</u>

PROPOSED MAXIMUM RATE OF RUNOFF (CFS)

Storm Event	To Wayzata	To Onsite Wetland	To Offsite Wetland	Total Existing
	Blvd (node 4S)	(node Wtld Prd inflow)	(reach 3R)	(reach 4R)
1-Year	0.45	2.64	0.59	<u>0.84</u>
2-Year	0.58	3.26	0.79	<u>1.11</u>
10-Year	1.09	11.92	1.58	<u>2.19</u>
100-Year	2.22	30.24	3.45	<u>4.74</u>

Water Quality

Due to the presence of HSG D soils onsite and volume abstraction being infeasible, the Marsh Run II project utilizes alternate compliance to satisfy water quality requirements. The City of Minnetonka's Volume Retention Compliance Sequencing Approach requires new development and redevelopment projects provide for 60% Total Phosphorus (TP) removal and 90% Total Suspended Solids (TSS) removal. BCWMC utilizes a Flexible Treatment Option flowchart to determine the water quality requirements. The Marsh Run II site is restricted due to the presence of HSG D soils and proximity to the existing wetland which results in the classification of Flexible Treatment Option #2. FTO#2 requires providing 60% annual phosphorous removal from site runoff. Manufactured Treatment Devices (MTD) were selected to provide water quality control for the site given limited surface area and depth for media filtration or wet sedimentation. An MPCA-approved StormFilter was selected to provide 60% TP removal along with 85% TSS removal as stated in the Minnesota Stormwater Manual and will treat discharge from the detention pipes. An MPCA-approved Jellyfish was selected to provide 56% TP removal and 80% TSS removal as stated in the Minnesota Stormwater Manual and will treat runoff from the garage entrance. The MIDS Calculator was used to model the nutrient loads of the proposed site and the results of the model are summarized in the table below. Please see the appendices for the full MIDS printout.

NUTRIENT ANALYSIS				
BMP TSS Load (lb) TP Load (lb)				
Proposed Load Generated	798.8	4.397		
Load Removed by BMPs	716.2	2.780		
% Removed	90	63		

Pretreatment

Pretreatment prior to the subsurface detention pipes and StormFilter will be provided in the form of sump manholes. SHSAM was used to determine the required sump size given removal requirements and incorporated in the MIDS model.

Pretreatment		Standard S	Standard Sumps		a		1.83 ac	
Precipitati	on	Golden Va	olden Valley ('95-'07) Hydraulic Length		76 ft			
PSD		OK110-PS	D			lope 3.0%		
Temperatu	ıre	St. Paul		Pervious CN 80				
Influent Co	onc. (mg/L)	200		Im	pervious	%	95%	
Name	Model	Total Load (lbs)	Total Load Remo	Removal Efficie	n Model He	eight (ft)	Model Diameter (ft)	Pipe Diameter (in
StandardSumps	42	22790	753	3.3	2.0		4.0	12
StandardSumps	44	22790	2186	9.6	4.0		4.0	15
StandardSumps	55	22790	4413	19.4	5.0		5.0	18

Volume Reduction

Due to the presence of HSG D soils onsite and volume abstraction being infeasible, the Marsh Run II project utilizes alternate compliance to satisfy volume reduction requirements. The City of Minnetonka's Volume Retention Compliance Sequencing Approach requires new development and redevelopment projects retain runoff to the maximum extent practicable. BCWMC's FTO#2 also requires providing volume abstraction to the maximum extent practicable.

Given limited surface area and proximity to an existing wetland, the chosen solution for the Marsh Run II project includes filtrating 1.1" of runoff over the project's new and disturbed impervious surfaces through an MPCA-approved Manufactured Treatment Device. Discharge from the MTD will flow into the existing wetland located north of the proposed building. Detailed calculations outlining the volume reduction requirements are outlined below. Further information may be found in the appendices.

Required Treatment Volume(ft^3) = $V_{inf} = 1.1(in) * \frac{1 ft}{12 in} * New Impervious Area (<math>ft^2$) $V_{inf}(ft^3) = 1.1(in) * \frac{1 ft}{12 in} * 86,261(ft^2) = 7,907 ft^3$

New Impervious Surface	86,261	sf
Design Treatment Rainfall Event	1.1	in
Required Treatment Volume	7,907	cf
Required Drawdown Time	48	hrs
Provided Volume Below Outlet	7,920	cf

VOLUME CONTROL ANALYSIS

Wetlands

The existing wetland located onsite is classified as Manage 2 per communication with the City of Minnetonka. Marsh Run II will provide the required limited impacts to wetland hydrology. The results of wetland hydrologic impacts are summarized below. Detailed calculations may be found in the HydroCad analysis of the appendices.

WEILAND BOUNCE ANALISIS (FI)						
STORM	EXISTING	PROPOSED	CHANGE			
1-YEAR	916.71	916.81	0.10			
2-YEAR	916.87	916.97	0.10			
10-YEAR	917.44	917.55	0.11			
100-YEAR	918.22	918.21	0.01			

WETLAND BOUNCE ANALYSIS (FT)

WETLAND INFLOW ANALYSIS (AC-FT)

STORM	EXISTING	PROPOSED	CHANGE
1-YEAR	0.369	0.421	14%
2-YEAR	0.451	0.508	13%
10-YEAR	0.771	0.839	9%
100-YEAR	1.509	1.592	6%

Wetland buffers are provided in accordance with BCWMC and the City of Minnetonka standards. BCWMC requires Manage 2 wetlands have an average buffer width of 25' and minimum width of 15', while the City of Minnetonka requires a 16.5' buffer. A summary of the buffer analysis is provided below. Please see the civil sheets for buffer delineation.

WETLAND BUFFER ANALYSIS D REQUIRED (25' AVERAGE) (SF) PROVI

WETLAND	REQUIRED (25' AVERAGE) (SF)	PROVIDED (SF)
ONSITE	18,870	18,870
OFFSITE	14,832	14,877

Emergency Overflow

The grading design will convey overflow runoff through the site should a catch basin or pipe become plugged or if a rainfall event occurs that exceeds the design capacity of the storm sewer system. Overflow runoff will be routed offsite without impacting any neighboring structures. The high-water level of the underground detention system is 928.10 which provides greater than one foot of elevation separation between the HWL and the FFE of the proposed building.

Stormwater System Operations & Maintenance

An operations & maintenance agreement will be prepared for the project if required by the LGU.

Erosion & Sediment Control

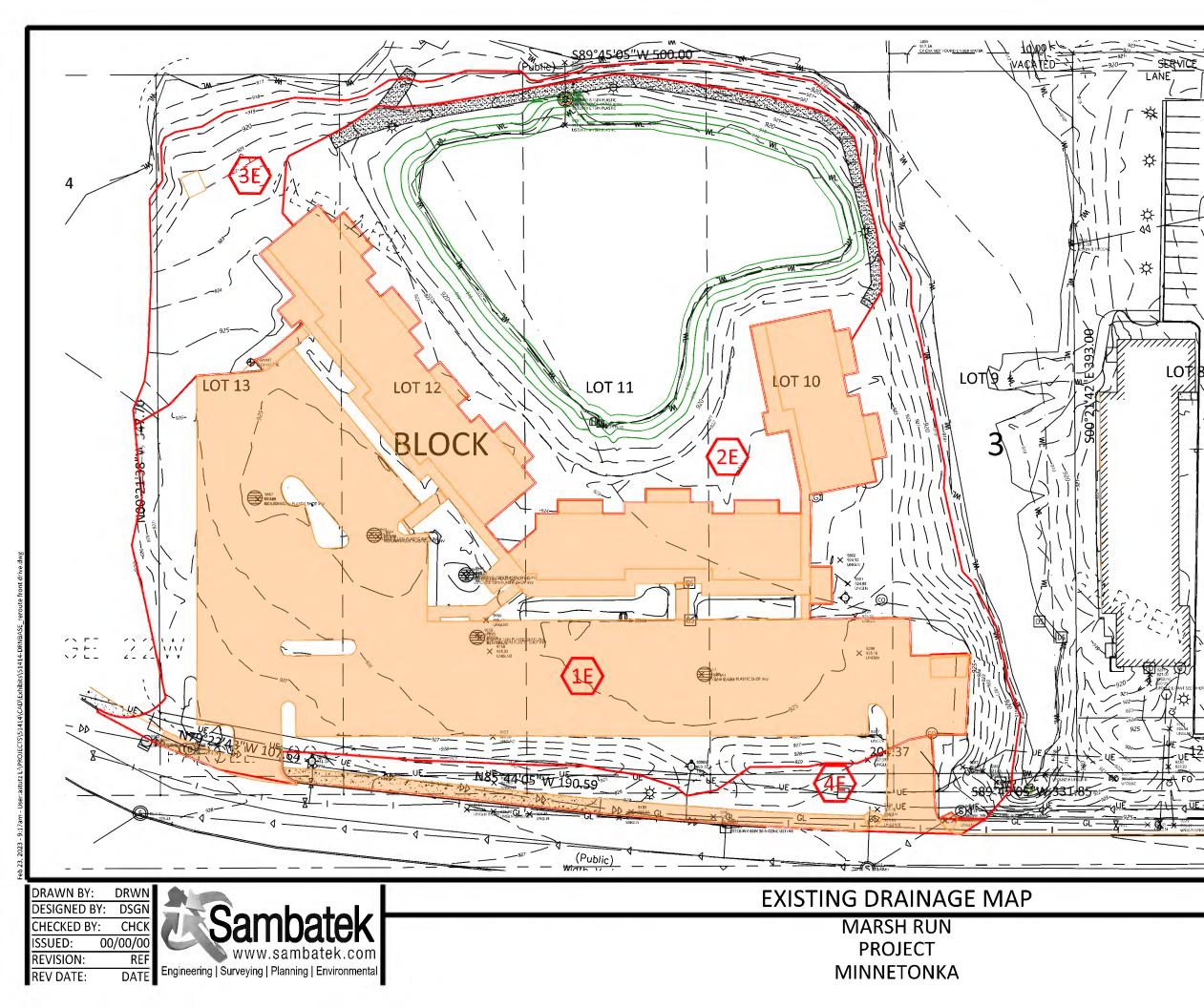
A comprehensive Stormwater Pollution Prevention Plan (SWPPP) meeting the requirements of the MPCA NPDES permit will be developed as a part of the proposed plans.

Summary

The proposed Marsh Run II project will meet the requirements of the City of Minnetonka, BCWMC, and MPCA through construction of underground detention and filtration through one MTD. These BMPs will provide the required rate control, water quality, and volume reduction improvements prior to discharging stormwater runoff from the site to downstream receiving waters.

If you have any questions, comments, or additional information regarding this report, please contact me at <u>JBailey@sambatek.com</u> or 763.746.1606

Enclosures Appendix A – Drainage Maps Appendix B - Hydrocad Report Appendix C – MIDS Model Appendix D – Boring Logs



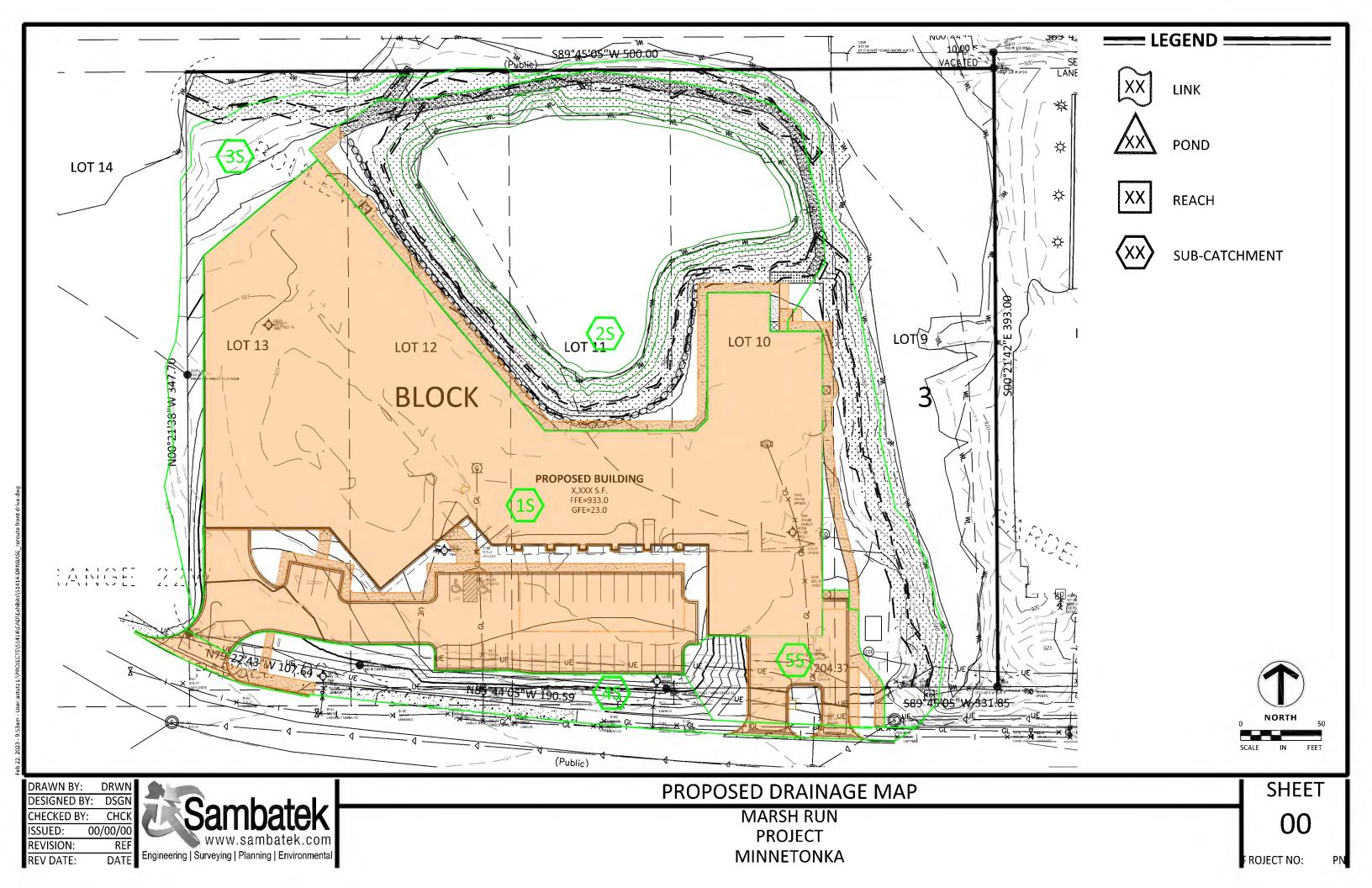
APPENDIX A – DRAINAGE MAPS

XX POND

(xx)

REACH

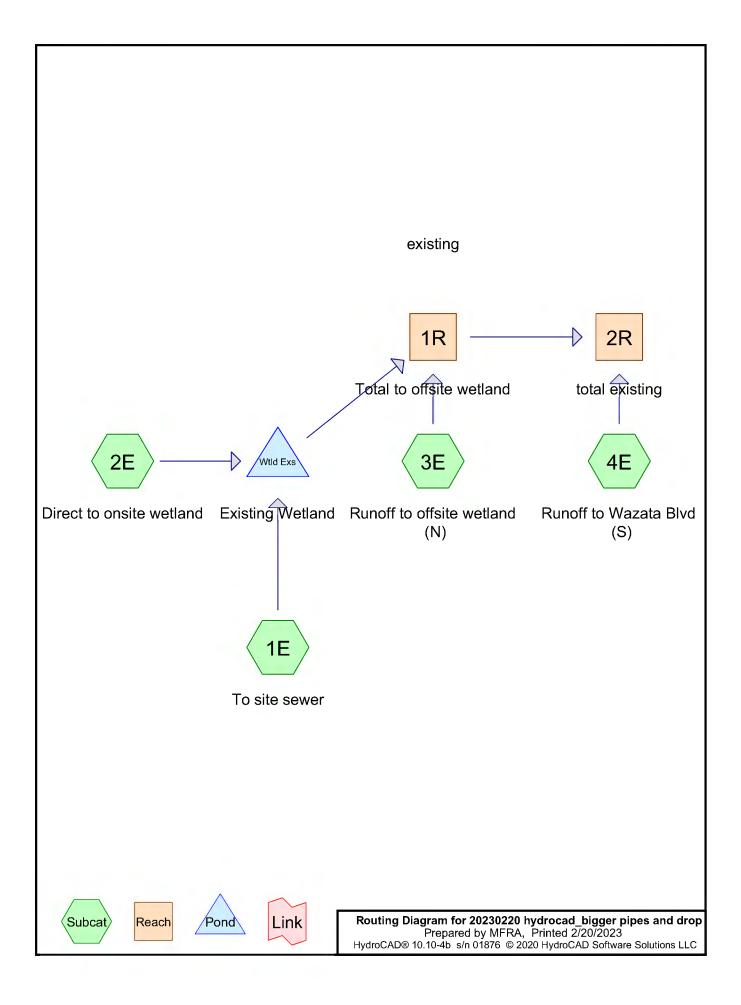
SUB-CATCHMENT


NORTH SCALE IN FEET

SHEET

00

ROJECT NO:


ΡN

APPENDIX B – HYDROCAD REPORT

	Existing
20230220 hydrocad_bigger pipes and drop	
Prepared by MFRA	Printed 2/20/2023
HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC	Page 2

Project Notes

Rainfall events imported from "NRCS-Rain.txt" for 5327 MN Hennepin

Printed 2/20/2023 Page 3

Ev	vent#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
	1	1-Year	MSE 24-hr	3	Default	24.00	1	2.48	2
	2	2-Year	MSE 24-hr	3	Default	24.00	1	2.86	2
	3	10-Year	MSE 24-hr	3	Default	24.00	1	4.26	2
	4	100-Year	MSE 24-hr	3	Default	24.00	1	7.32	2

Rainfall Events Listing (selected events)

	Existing
20230220 hydrocad_bigger pipes and drop	
Prepared by MFRA	Printed 2/20/2023
HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC	Page 4

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.520	80	>75% Grass cover, Good, HSG D (1E, 4E)
1.542	98	Paved parking, HSG D (1E, 4E)
1.841	79	Woods/grass comb., Good, HSG D (2E, 3E)
3.902	87	TOTAL AREA

20230220 hydrocad_bigger pipes and drop Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC Printed 2/20/2023

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
3.902	HSG D	1E, 2E, 3E, 4E
0.000	Other	
3.902		TOTAL AREA

Page 5

20220220 budroood bigger pipes and drop	Existing
20230220 hydrocad_bigger pipes and drop Prepared by MFRA	Printed 2/20/2023
HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC	Page 6

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment	
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers	
0.000	0.000	0.000	0.520	0.000	0.520	>75% Grass cover, Good	1E, 4E	
0.000	0.000	0.000	1.542	0.000	1.542	Paved parking	1E, 4E	
0.000	0.000	0.000	1.841	0.000	1.841	Woods/grass comb., Good	2E, 3E	
0.000	0.000	0.000	3.902	0.000	3.902	TOTAL AREA		

Ground Covers (selected nodes)

20230220 hydrocad bigger pipes and drop	Existing
Prepared by MFRA	Printed 2/20/2023
HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC	Page 7

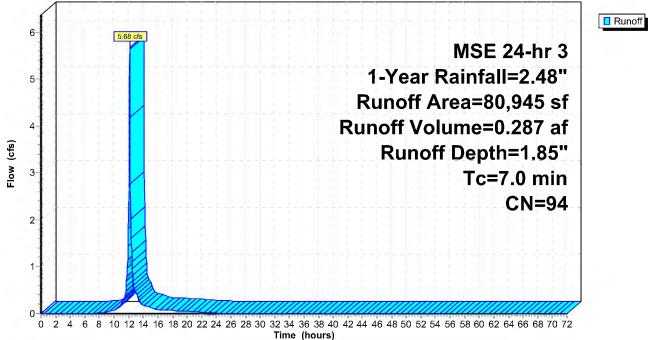
Line# Node In-Invert Out-Invert Length Slope n Width Diam/Height Inside-Fill Number (feet) (feet) (feet) (ft/ft) (inches) (inches) (inches) 916.35 0.0072 0.010 0.0 1 Wtld Exs 916.22 0.0 15.0 18.0 2 Wtld Exs 917.07 916.39 12.0 0.0567 0.010 0.0 15.0 0.0

Pipe Listing (selected nodes)

20230220 hydrocad_bigger pipes a Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 Hydro	-		Existing <i>1-Year Rainfall=2.48"</i> Printed 2/20/2023 <u>Page 8</u>
	72.00 hrs, dt=0.05 hrs, -20 method, UH=SCS, I method - Pond routin	Weighted-CN	nd method
Subcatchment1E: To site sewer			ous Runoff Depth=1.85" Runoff=5.68 cfs 0.287 af
Subcatchment2E: Direct to onsite wetland			ous Runoff Depth=0.82" Runoff=1.69 cfs 0.082 af
Subcatchment3E: Runoff to offsite wetlan Flow Length=170'			ous Runoff Depth=0.82" Runoff=0.72 cfs 0.044 af
Subcatchment4E: Runoff to Wazata Blvd			ous Runoff Depth=1.29" Runoff=0.46 cfs 0.022 af
Reach 1R: Total to offsite wetland		C	Inflow=0.72 cfs 0.044 af Dutflow=0.72 cfs 0.044 af
Reach 2R: total existing		C	Inflow=1.07 cfs 0.066 af Dutflow=1.07 cfs 0.066 af
Pond Wtld Exs: Existing Wetland	Peak Elev=916.71' Sto	•	Inflow=7.36 cfs 0.369 af Dutflow=0.00 cfs 0.000 af
Total Runoff Area = 3.902	ac Runoff Volume =	0.435 af Aver	age Runoff Depth = 1.34

Total Runoff Area = 3.902 acRunoff Volume = 0.435 afAverage Runoff Depth = 1.34"60.49% Pervious = 2.360 ac39.51% Impervious = 1.542 ac

Summary for Subcatchment 1E: To site sewer

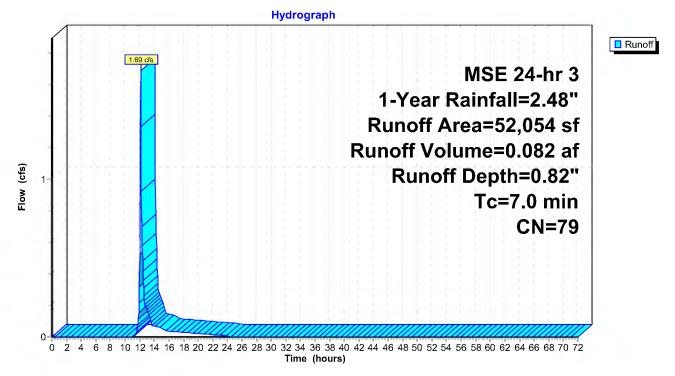

5.68 cfs @ 12.14 hrs, Volume= 0.287 af, Depth= 1.85" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.48"

A	rea (sf)	CN	Description				
	63,533	98	Paved park	ing, HSG D)		
	17,412	80	>75% Gras	s cover, Go	ood, HSG D		
	80,945	94	Weighted A	verage			
	17,412		21.5 ⁻ 1% Pe	rvious Area	3		
	63,533		78.49% Imp	pervious Ar	rea		
_				_			
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec) (cfs)					
7.0		Direct Entry,					
					-		

Subcatchment 1E: To site sewer

Existing


Summary for Subcatchment 2E: Direct to onsite wetland

1.69 cfs @ 12.15 hrs, Volume= 0.082 af, Depth= 0.82" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.48"

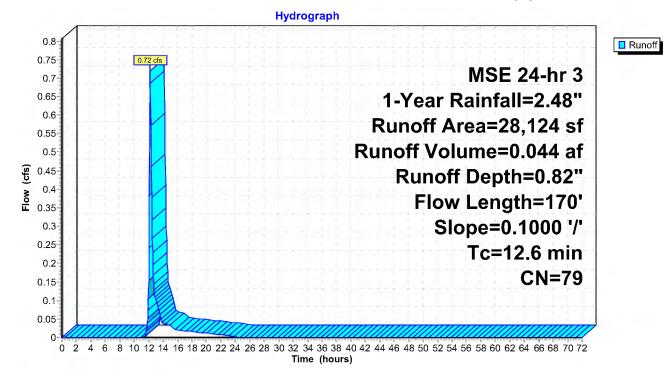
Area (s	f) CN	Description			
	0 98	Paved park	ing, HSG D)	
52,05	4 79	Woods/gras	s comb., C	Good, HSG D	
52,05		Weighted A		_	
52,05	4	100.00% Pe	ervious Are	а	
Tc Leng (min) (fe			Capacity (cfs)	Description	
7.0				Direct Entry,	
		/	-		

Subcatchment 2E: Direct to onsite wetland

Summary for Subcatchment 3E: Runoff to offsite wetland (N)

Existing

Page 11

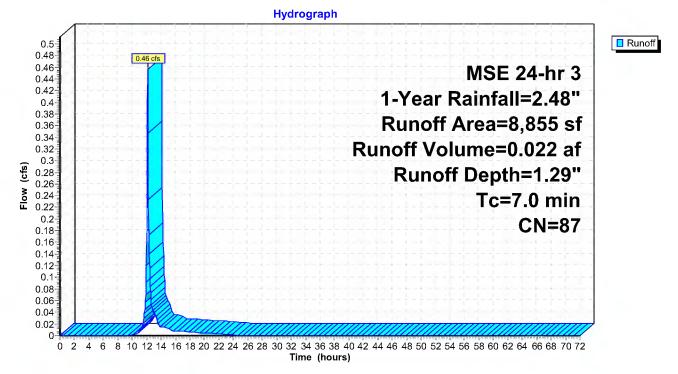

Printed 2/20/2023

0.72 cfs @ 12.22 hrs, Volume= 0.044 af, Depth= 0.82" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.48"

_	A	rea (sf)	CN [CN Description				
	0 98 Paved parking, HSG D							
_	28,124 79 Woods/grass comb., Good, HSG D							
		28,124	79 ۱	Neighted A	verage			
		28,124		100.00% P	ervioūs Are	а		
	Тс	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	11.9	100	0.1000	0.14		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 2.86"		
	0.7	70	0.1000	1.58		Shallow Concentrated Flow,		
_						Woodland Kv= 5.0 fps		
	12.6	170	Total					

Subcatchment 3E: Runoff to offsite wetland (N)



Runoff = 0.46 cfs @ 12.14 hrs, Volume= 0.022 af, Depth= 1.29"

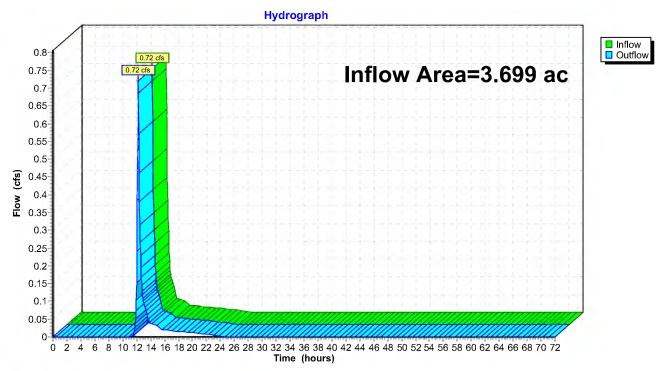
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.48"

A	rea (sf)	CN	Description			
	3,630	98	Paved park	Paved parking, HSG D		
	5,225	80	>75% Gras	>75% Grass cover, Good, HSG D		
	8,855	87	Weighted A	Veighted Average		
	5,225		59.01% Pervious Area			
	3,630		40.99% Impervious Area			
Тс	Length	Slope	be Velocity Capacity Description			
(min)	(feet)	(ft/̈ft				
7.0		-			Direct Entry,	

Subcatchment 4E: Runoff to Wazata Blvd (S)

Summary for Reach 1R: Total to offsite wetland

Existing


Page 13

Printed 2/20/2023

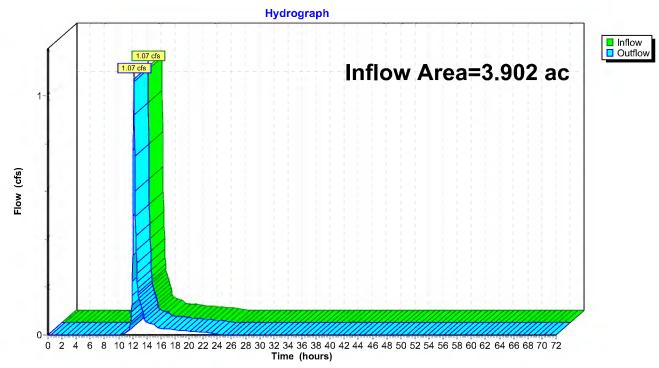
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	=	3.699 ac, 39.43% Impervious, Inflow Depth = 0.14" for	r 1-Year event
Inflow =	:	0.72 cfs @ 12.22 hrs, Volume= 0.044 af	
Outflow =		0.72 cfs @ 12.22 hrs, Volume= 0.044 af, Atten=	0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 1R: Total to offsite wetland

Summary for Reach 2R: total existing


Existing

Page 14

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		3.902 ac, 39.51% Impervious, Inflow Depth = 0.20" for 1-Year event
Inflow	=	1.07 cfs @ 12.18 hrs, Volume= 0.066 af
Outflow	=	1.07 cfs @ 12.18 hrs, Volume= 0.066 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 2R: total existing

Summary for Pond Wtld Exs: Existing Wetland

Inflow Area =	3.053 ac, 47.77% Impervious, Inflow	Depth = 1.45" for 1-Year event
Inflow =	7.36 cfs @ 12.14 hrs, Volume=	0.369 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 916.71'@ 24.45 hrs Surf.Area= 23,389 sf Storage= 16,056 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	t Avail.Stor	rage Storage	e Description		
#1	916.00	¹ 76,78	34 cf Custor	n Stage Data (Prisr	natic) Listed below (Recalc))
	_			•		
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
916.0	0	21,538	0	0		
917.0	0	24,128	22,833	22,833		
918.0	0	26,828	25,478	48,311		
919.0	0	30,118	28,473	76,784		
Device	Routing	Invert	Outlet Devic	es		
#1 Primary 916.3		916.35'	15.0" Roun	d ocs outlet L= 18.	0' Ke= 0.900	
	-		Inlet / Outlet	Invert= 916.35' / 916	6.22' S= 0.0072 '/' Cc= 0.	.900
			n= 0.010, FI	ow Area= 1.23 sf		
#2	Device 1	918.08'	4.0' long oc	s weir wall 2 End C	Contraction(s)	
#3	Device 2	917.07'	15.0" Round ocs inlet L= 12.0' Ke= 0.900			
			Inlet / Outlet	Invert= 917.07' / 916	6.39' S= 0.0567 '/' Cc= 0.	.900
			n= 0.010, FI	ow Area= 1.23 sf		

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=916.00' TW=0.00' (Dynamic Tailwater)

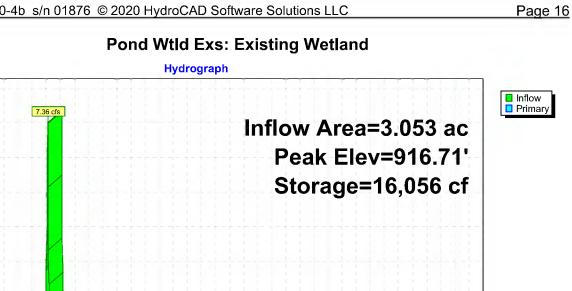
-1=ocs outlet (Controls 0.00 cfs)

2=ocs weir wall (Controls 0.00 cfs) -3=ocs inlet (Controls 0.00 cfs)

8

7.

6-


5-

3-

2-

1-0.00 cfs 0-

Flow (cfs)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Existing MSE 24-hr 3 1-Year Rainfall=2.48" Printed 2/20/2023 LC Page 16

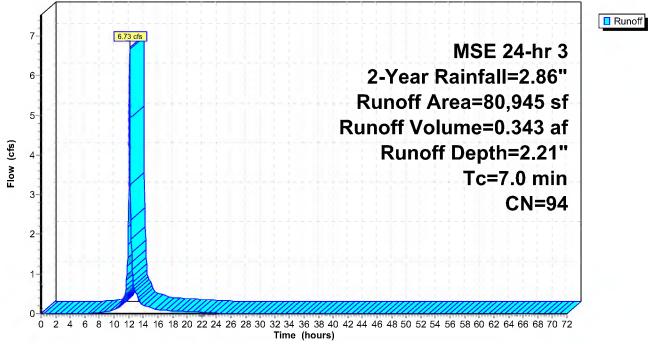
Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond Wtld Exs: Existing Wetland

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
916.00	21,538	0	918.55	28,637	63,564
916.05	21,667	1,080	918.60	28,802	65,000
916.10	21,797	2,167	918.65	28,966	66,444
916.15	21,926	3,260	918.70	29,131	67,897
916.20	22,056	4,359	918.75	29,296	69,357
916.25	22,000		918.80	29,290	
		5,465			70,826
916.30	22,315	6,578	918.85	29,625	72,303
916.35	22,445	7,697	918.90	29,789	73,789
916.40	22,574	8,822	918.95	29,954	75,282
916.45	22,704	9,954	919.00	30,118	76,784
916.50	22,833	11,093			
916.55	22,962	12,238			
916.60	23,092	13,389			
916.65	23,221	14,547			
916.70	23,351	15,711			
916.75	23,481	16,882			
916.80	23,610	18,059			
916.85	23,740	19,243			
916.90	23,869	20,433			
916.95	23,999	21,630			
917.00	24,128	22,833			
917.05	24,263	24,043			
917.10	24,398	25,259			
917.15	24,533	26,483			
917.20	24,668	27,713			
917.25	24,803	28,949			
917.30	24,938	30,193			
917.35	25,073	31,443			
917.40	25,208	32,700			
917.45	25,343	33,964			
917.50	25,478	35,235			
917.55	25,613	36,512			
917.60					
	25,748	37,796			
917.65	25,883	39,087			
917.70	26,018	40,384			
917.75	26,153	41,688			
917.80	26,288	42,999			
917.85	26,423	44,317			
917.90	26,558	45,642			
917.95	26,693	46,973			
918.00	26,828	48,311			
918.05	26,992	49,657			
918.10	27,157	51,010			
918.15	27,321	52,372			
918.20	27,486	53,742			
918.25	27,651	55,121			
918.30	27,815	56,507			
918.35	27,980	57,902			
918.40	28,144	59,305			
918.45	28,309	60,717			
918.50	28,473	62,136			

20230220 hydrocad_bigger pipes a Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 Hydro		Existing 3 <i>2-Year Rainfall=2.86"</i> Printed 2/20/2023 <u>Page 18</u>		
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method				
Subcatchment1E: To site sewer		•	vious Runoff Depth=2.21" Runoff=6.73 cfs 0.343 af	
Subcatchment2E: Direct to onsite wetland			/ious Runoff Depth=1.09" Runoff=2.25 cfs 0.108 af	
Subcatchment3E: Runoff to offsite wetlan Flow Length=170'		•	vious Runoff Depth=1.09" Runoff=0.97 cfs 0.058 af	
Subcatchment4E: Runoff to Wazata Blvd			vious Runoff Depth=1.62" Runoff=0.57 cfs 0.027 af	
Reach 1R: Total to offsite wetland			Inflow=0.97 cfs 0.058 af Outflow=0.97 cfs 0.058 af	
Reach 2R: total existing			Inflow=1.40 cfs 0.086 af Outflow=1.40 cfs 0.086 af	
Pond Wtld Exs: Existing Wetland	Peak Elev=916.87' Sto	•	⁷ Inflow=8.97 cfs 0.451 af Outflow=0.00 cfs 0.000 af	
Total Runoff Area = 3.902	ac Runoff Volume = 60.49% Pervious = 2.3		rage Runoff Depth = 1.65" 1% Impervious = 1.542 ac	

Summary for Subcatchment 1E: To site sewer

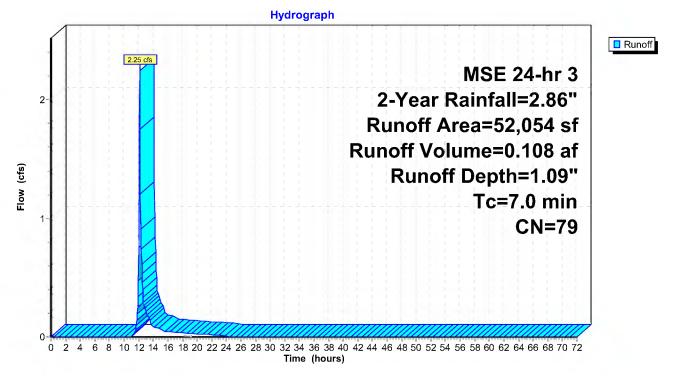

Runoff 6.73 cfs @ 12.14 hrs, Volume= 0.343 af, Depth= 2.21" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

A	rea (sf)	CN	Description			
	63,533	98	Paved parking, HSG D			
	17,412	80	>75% Grass cover, Good, HSG D			
	80,945	94	Weighted A	Weighted Average		
	17,412		21.51% Pervious Area			
	63,533		78.49% Impervious Area			
т.	ما ان مر مر ا	Class	Valasity	Constitu	Description	
TC	Length	Slope	5 1 5 1			
(min)	(feet)	(ft/ft	:) (ft/sec) (cfs)			
7.0					Direct Entry,	

Subcatchment 1E: To site sewer

Existing

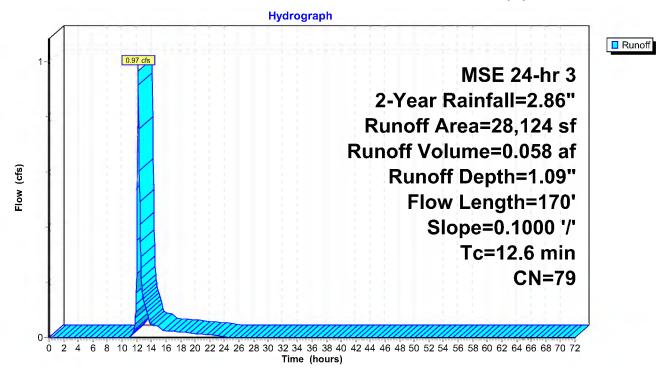

Summary for Subcatchment 2E: Direct to onsite wetland

Runoff = 2.25 cfs @ 12.15 hrs, Volume= 0.108 af, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

Are	ea (sf)	CN	Description				
	0	98	Paved park	ing, HSG D)		
5	52,054	79	Woods/gras	s comb., C	Good, HSG D		
	52,054	79	Weighted Average				
5	52,054		100.00% Pervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
7.0					Direct Entry,		

Subcatchment 2E: Direct to onsite wetland


Summary for Subcatchment 3E: Runoff to offsite wetland (N)

0.97 cfs @ 12.21 hrs, Volume= 0.058 af, Depth= 1.09" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

_	A	rea (sf)	CN I	Description						
		0	98 I	8 Paved parking, HSG D						
_		28,124	79 \							
		28,124	79 N	Neighted A	verage					
		28,124		100.00% Pe	ervious Are	a				
	Тс	Length	Slope	~	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	11.9	100	0.1000	0.14		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 2.86"				
	0.7	70	0.1000	1.58		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	12.6	170	Total							

Subcatchment 3E: Runoff to offsite wetland (N)

Printed 2/20/2023 Page 21

Existing

Existing

Page 22

Printed 2/20/2023

0.57 cfs @ 12.14 hrs, Volume= 0.027 af, Depth= 1.62" Runoff =

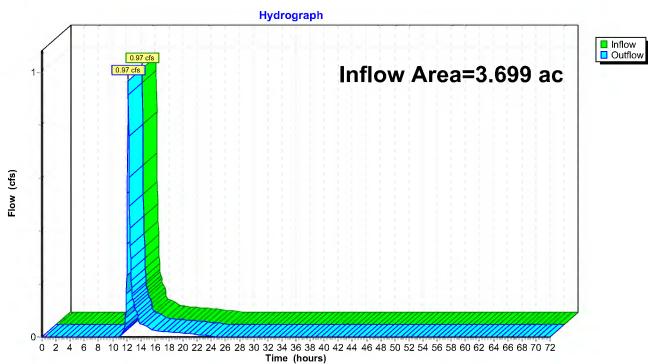
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

A	rea (sf)	CN	Description				
	3,630	98	Paved park	ing, HSG D	D		
	5,225	80	>75% Gras	s cover, Go	ood, HSG D		
	8,855	87	Weighted Average				
	5,225		59.01% Pervious Area				
	3,630		40.99% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)			
7.0					Direct Entry,		

Subcatchment 4E: Runoff to Wazata Blvd (S)

Summary for Reach 1R: Total to offsite wetland

Existing


Page 23

Printed 2/20/2023

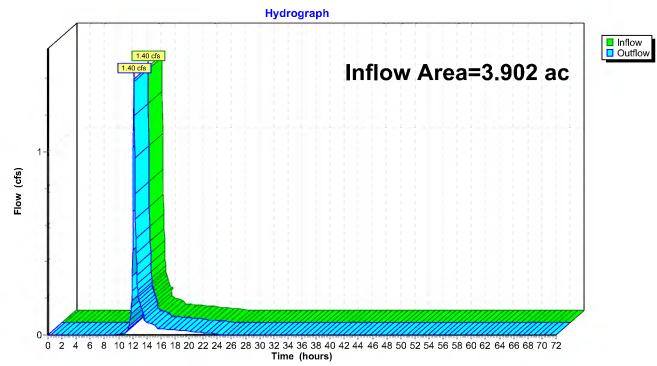
[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	3.699 ac, 39.43% Impervious, Inflow Depth = 0.19" for 2-Year event
Inflow	=	0.97 cfs @ 12.21 hrs, Volume= 0.058 af
Outflow	=	0.97 cfs @ 12.21 hrs, Volume= 0.058 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 1R: Total to offsite wetland

Summary for Reach 2R: total existing


Existing

Page 24

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	3.902 ac, 39.51% Impervious, Inflow Depth = 0.26" for 2-Year event	
Inflow	=	1.40 cfs @ 12.18 hrs, Volume= 0.086 af	
Outflow	=	1.40 cfs @ 12.18 hrs, Volume= 0.086 af, Atten= 0%, Lag= 0.0 m	າin

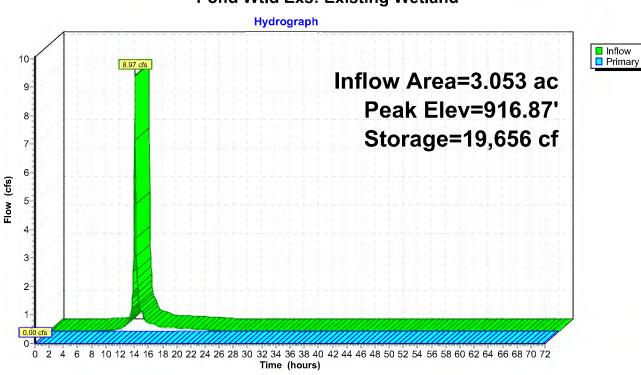
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 2R: total existing

Summary for Pond Wtld Exs: Existing Wetland

Inflow Area =	3.053 ac, 47.77% Impervious, Inflow E	Depth = 1.77" for 2-Year event
Inflow =	8.97 cfs @ 12.14 hrs, Volume=	0.451 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 916.87' @ 24.45 hrs Surf.Area= 23,785 sf Storage= 19,656 cf


Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	t Avail.Sto	rage Storage	e Description		
#1	916.00)' 76,78	34 cf Custon	n Stage Data (Pr	ismatic)Listed below (Recalc)
	_					
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
916.0	00	21,538	0	0		
917.0	00	24,128	22,833	22,833		
918.0	00	26,828	25,478	48,311		
919.0	00	30,118	28,473	76,784		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	916.35'	15.0" Round	d ocs outlet L= [·]	18.0' Ke= 0.900	
	2		Inlet / Outlet	Invert= 916.35' / 9	916.22' S= 0.0072 '/'	Cc= 0.900
			n= 0.010. Flo	ow Area= 1.23 sf		
#2	Device 1	918.08'	,	s weir wall 2 End	d Contraction(s)	
#3	Device 2	917.07'	•	d ocs inlet L= 12		
					916.39' S= 0.0567 '/'	Cc = 0.900
				ow Area= 1.23 sf		

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=916.00' TW=0.00' (Dynamic Tailwater)

-1=ocs outlet (Controls 0.00 cfs)

2=ocs weir wall (Controls 0.00 cfs) -3=ocs inlet (Controls 0.00 cfs)

Pond Wtld Exs: Existing Wetland

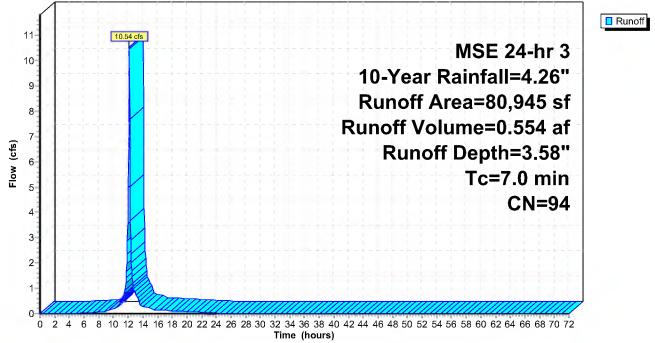
Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond Wtld Exs: Existing Wetland

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(s <u>q</u> -ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
916.00	21,538	0	918.55	28,637	63,564
916.05	21,667	1,080	918.60	28,802	65,000
916.10	21,797	2,167	918.65	28,966	66,444
916.15	21,926	3,260	918.70	29,131	67,897
916.20	22,056	4,359	918.75	29,296	69,357
916.25	22,186	5,465	918.80	29,460	70,826
916.30	22,315	6,578	918.85	29,625	72,303
916.35	22,445	7,697	918.90	29,789	73,789
916.40	22,574	8,822	918.95	29,954	75,282
916.45	22,704	9,954	919.00	30,118	76,784
916.50	22,833	11,093	010.00	50,110	10,104
916.55	22,962	12,238			
916.60	23,092	13,389			
916.65	23,221	14,547			
916.70 016 75	23,351	15,711			
916.75	23,481	16,882			
916.80	23,610	18,059			
916.85	23,740	19,243			
916.90	23,869	20,433			
916.95	23,999	21,630			
917.00	24,128	22,833			
917.05	24,263	24,043			
917.10	24,398	25,259			
917.15	24,533	26,483			
917.20	24,668	27,713			
917.25	24,803	28,949			
917.30	24,938	30,193			
917.35	25,073	31,443			
917.40	25,208	32,700			
917.45	25,343	33,964			
917.50	25,478	35,235			
917.55	25,613	36,512			
917.60	25,748	37,796			
917.65	25,883	39,087			
917.70	26,018	40,384			
917.75	26,153	41,688			
917.80	26,288	42,999			
917.85	26,423	44,317			
917.90	26,558	45,642			
917.95	26,693	46,973			
918.00	26,828	48,311			
918.05	26,992	49,657			
918.10	27,157	51,010			
918.15	27,321	52,372			
918.20	27,486	53,742			
918.25	27,651	55,121			
918.30	27,815	56,507			
918.35	27,980	57,902			
918.40	28,144	59,305			
918.45	28,309	60,717			
918.50	28,473	62,136			
		*			

20230220 hydrocad_bigger pipes a Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 Hydr		Existing 8 <i>10-Year Rainfall=4.26"</i> Printed 2/20/2023 Page 28				
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method						
Subcatchment1E: To site sewer			vious Runoff Depth=3.58" Runoff=10.54 cfs 0.554 af			
Subcatchment2E: Direct to onsite wetlan			vious Runoff Depth=2.18" Runoff=4.52 cfs 0.217 af			
Subcatchment3E: Runoff to offsite wetla Flow Length=170'			vious Runoff Depth=2.18" Runoff=1.96 cfs 0.117 af			
Subcatchment4E: Runoff to Wazata Blvd	,		vious Runoff Depth=2.88" ′Runoff=0.99 cfs 0.049 af			
Reach 1R: Total to offsite wetland			Inflow=1.96 cfs 0.117 af Outflow=1.96 cfs 0.117 af			
Reach 2R: total existing			Inflow=2.73 cfs 0.166 af Outflow=2.73 cfs 0.166 af			
Pond Wtld Exs: Existing Wetland	Peak Elev=917.44' Sto	rage=33,586 cf	Inflow=15.06 cfs 0.771 af Outflow=0.00 cfs 0.000 af			
Total Runoff Area = 3.902	ac Runoff Volume =	= 0.937 af Av	erage Runoff Depth = 2.88"			

60.49% Pervious = 2.360 ac 39.51% Impervious = 1.542 ac


Runoff = 10.54 cfs @ 12.14 hrs, Volume= 0.554 af, Depth= 3.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

A	rea (sf)	CN	Description			
	63,533	98	Paved park	ing, HSG D	D	
	17,412	80	>75% Gras	s cover, Go	ood, HSG D	
	80,945	94	Weighted Average			
	17,412		21.51% Pervious Area			
	63,533		78.49% Impervious Area			
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft]) (ft/sec)	(cfs)		
7.0					Direct Entry,	
					-	

Subcatchment 1E: To site sewer

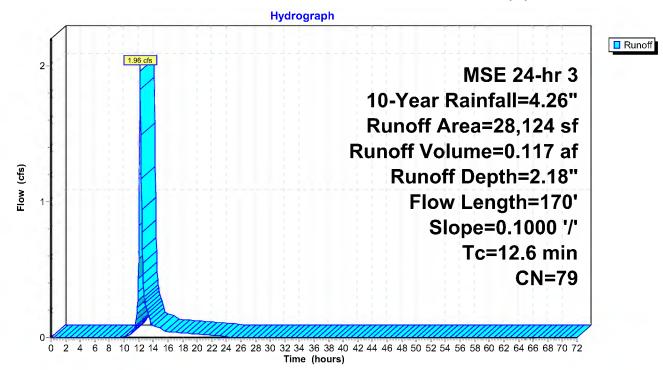
Summary for Subcatchment 2E: Direct to onsite wetland

Runoff = 4.52 cfs @ 12.14 hrs, Volume= 0.217 af, Depth= 2.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

Area (sf)	CN	Description				
0	98	Paved park	ing, HSG D	D		
52,054	79	Woods/gras	ss comb., C	Good, HSG D		
52,054	79	Weighted Average				
52,054		100.00% P	ervioūs Are	ea		
Tc Lengtl	•		Capacity	Description		
(min) (feet	:) (ft/1	ft) (ft/sec)	(cfs)			
7.0				Direct Entry,		

Subcatchment 2E: Direct to onsite wetland

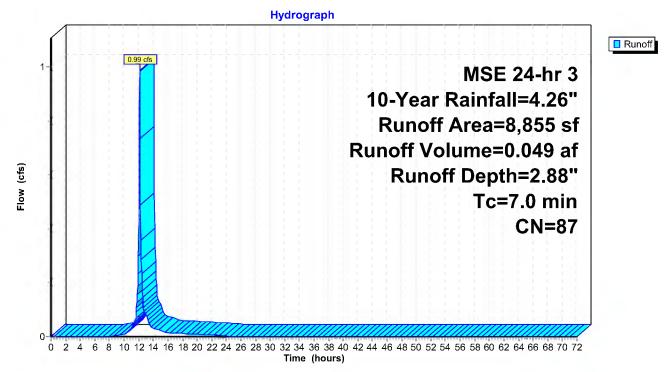

Summary for Subcatchment 3E: Runoff to offsite wetland (N)

1.96 cfs @ 12.21 hrs, Volume= 0.117 af, Depth= 2.18" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

A	rea (sf)	CN E	Description					
	0	98 F	Paved parking, HSG D					
	28,124	79 \						
	28,124	79 \	Neighted A	verage				
	28,124		100.00% Pe	ervious Are	a			
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
11.9	100	0.1000	0.14		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 2.86"			
0.7	70	0.1000	1.58		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
12.6	170	Total						

Subcatchment 3E: Runoff to offsite wetland (N)

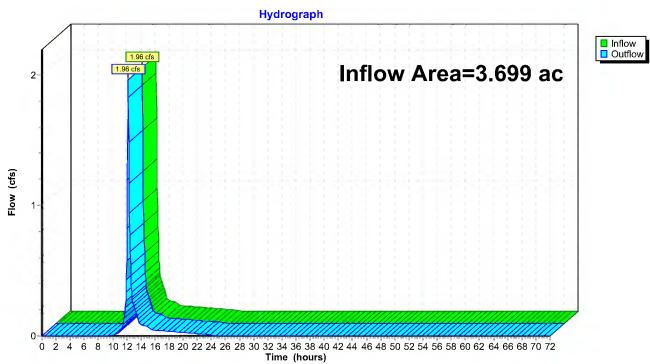

Existing

Runoff = 0.99 cfs @ 12.14 hrs, Volume= 0.049 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

A	rea (sf)	CN	Description				
	3,630	98	Paved parking, HSG D				
	5,225	80	>75% Grass cover, Good, HSG D				
	8,855	87	Weighted Average				
	5,225		59.01% Pe	vious Area	1		
	3,630		40.99% lmp	pervious Ar	ea		
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
7.0					Direct Entry,		

Subcatchment 4E: Runoff to Wazata Blvd (S)

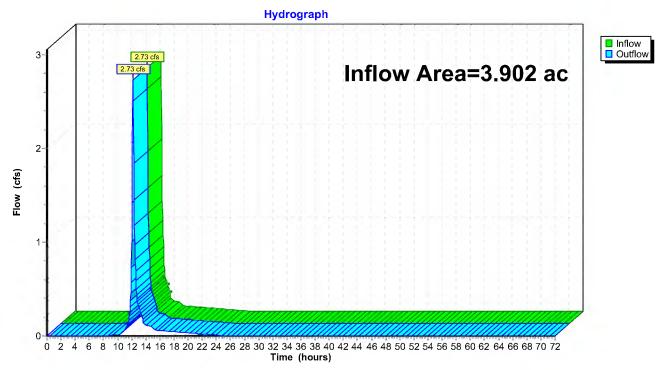

Existing

Summary for Reach 1R: Total to offsite wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.699 ac, 39.43% Impervious,	Inflow Depth = 0.38" for 10-Year event
Inflow =	1.96 cfs @ 12.21 hrs, Volume	e= 0.117 af
Outflow =	1.96 cfs @ 12.21 hrs, Volume	e= 0.117 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach 1R: Total to offsite wetland

Summary for Reach 2R: total existing

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.902 ac, 39.51% Impervious,	Inflow Depth = 0.51" for 10-Year event
Inflow =	2.73 cfs @ 12.18 hrs, Volume	e= 0.166 af
Outflow =	2.73 cfs @ 12.18 hrs, Volume	e= 0.166 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 2R: total existing

Summary for Pond Wtld Exs: Existing Wetland

Inflow Area =	3.053 ac, 4	17.77% Impervious, Inflo	w Depth = 3.03" for 10-Year event
Inflow =	15.06 cfs @	12.14 hrs, Volume=	0.771 af
Outflow =	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 917.44' @ 24.45 hrs Surf.Area= 25,303 sf Storage= 33,586 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	t Avail.Sto	rage Storage	ge Description
#1	916.00' 76,78		34 cf Custor	m Stage Data (Prismatic)Listed below (Recalc)
	_			
Elevatio		Surf.Area	Inc.Store	Cum.Store
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)
916.0	00	21,538	0	0
917.0	00	24,128	22,833	22,833
918.0	00	26,828	25,478	48,311
919.0	00	30,118	28,473	76,784
Device	Routing	Invert	Outlet Devic	ces
#1	Primary	916.35'	15.0" Roun	nd ocs outlet L= 18.0' Ke= 0.900
	-		Inlet / Outlet	t Invert= 916.35' / 916.22' S= 0.0072 '/' Cc= 0.900
			n= 0.010, Fl	low Area= 1.23 sf
#2	Device 1	918.08'	4.0' long oc	cs weir wall 2 End Contraction(s)
#3	Device 2	917.07'	15.0" Roun	nd ocs inlet L= 12.0' Ke= 0.900
			Inlet / Outlet	t Invert= 917.07' / 916.39' S= 0.0567 '/' Cc= 0.900
			n= 0.010, Fl	low Area= 1.23 sf
			,	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=916.00' TW=0.00' (Dynamic Tailwater)

-1=ocs outlet (Controls 0.00 cfs)

2=ocs weir wall (Controls 0.00 cfs) -3=ocs inlet (Controls 0.00 cfs)

Hydrograph Inflow
 Primary 15.06 cfs 16 Inflow Area=3.053 ac 15 Peak Elev=917.44' 14 13 Storage=33,586 cf 12 11 10 Flow (cfs) 9 8 7 6 5 4 3 2 1 0.00 0-4 cfs 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond Wtld Exs: Existing Wetland

Existing MSE 24-hr 3 10-Year Rainfall=4.26" Printed 2/20/2023 LLC Page 36

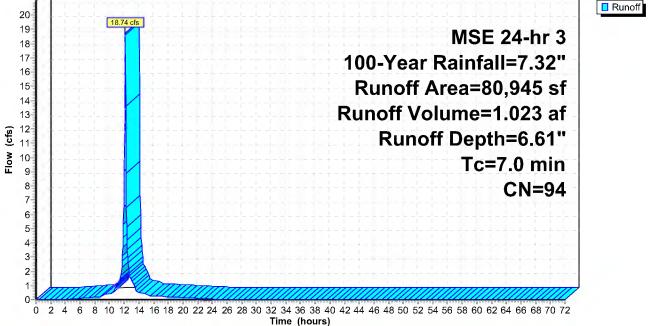
Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond Wtld Exs: Existing Wetland

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
916.00	21,538	0	918.55	28,637	63,564
916.05	21,667	1,080	918.60	28,802	65,000
916.10	21,797	2,167	918.65	28,966	66,444
916.15	21,926	3,260	918.70	29,131	67,897
					69,357
916.20	22,056	4,359	918.75	29,296	
916.25	22,186	5,465	918.80	29,460	70,826
916.30	22,315	6,578	918.85	29,625	72,303
916.35	22,445	7,697	918.90	29,789	73,789
916.40	22,574	8,822	918.95	29,954	75,282
916.45	22,704	9,954	919.00	30,118	76,784
916.50	22,833	11,093			
916.55	22,962	12,238			
916.60	23,092	13,389			
916.65	23,221	14,547			
916.70	23,351	15,711			
916.75	23,481	16,882			
916.80	23,610	18,059			
916.85	23,740	19,243			
916.90	23,869	20,433			
916.95	23,999	20,400			
917.00	24,128	22,833			
917.05	24,263	24,043			
917.10	24,398	25,259			
917.15	24,533	26,483			
917.20	24,668	27,713			
917.25	24,803	28,949			
917.30	24,938	30,193			
917.35	25,073	31,443			
917.40	25,208	32,700			
917.45	25,343	33,964			
917.50	25,478	35,235			
917.55	25,613	36,512			
917.60	25,748	37,796			
917.65	25,883	39,087			
917.70	26,018	40,384			
917.75	26,153	41,688			
917.80	26,288	42,999			
917.85	26,423	44,317			
917.90	26,558	45,642			
917.95	26,693	46,973			
918.00	26,828	48,311			
918.05	26,992	49,657			
918.10	27,157	51,010			
918.15	27,321	52,372			
918.20	27,486	53,742			
918.25	27,651	55,121			
918.30	27,815	56,507			
918.35	27,980	57,902			
918.40	28,144	59,305			
918.45	28,309	60,717			
918.50	28,473	62,136			

20230220 hydrocad_bigger pipes an Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 Hydrod		ons LLC	Existing 100-Year Rainfall=7.32" Printed 2/20/2023 Page 38
Runoff by SCS TR- Reach routing by Dyn-Stor-Ind	20 method, UH=SC	S, Weighted-CN	
Subcatchment1E: To site sewer	-		rvious Runoff Depth=6.61" Runoff=18.74 cfs 1.023 af
Subcatchment2E: Direct to onsite wetland		•	rvious Runoff Depth=4.88" Runoff=9.88 cfs 0.486 af
Subcatchment3E: Runoff to offsite wetland Flow Length=170' S			rvious Runoff Depth=4.88" Runoff=4.33 cfs 0.262 af
Subcatchment4E: Runoff to Wazata Blvd	-		rvious Runoff Depth=5.79" ′ Runoff=1.91 cfs 0.098 af
Reach 1R: Total to offsite wetland			Inflow=4.33 cfs 0.612 af Outflow=4.33 cfs 0.612 af
Reach 2R: total existing			Inflow=5.82 cfs 0.710 af Outflow=5.82 cfs 0.710 af
Pond Wtld Exs: Existing Wetland	Peak Elev=918.22' S	torage=54,202 cf	Inflow=28.61 cfs 1.509 af Outflow=0.66 cfs 0.350 af
	ac Runoff Volume 60.49% Pervious =		erage Runoff Depth = 5.75" 51% Impervious = 1.542 ac

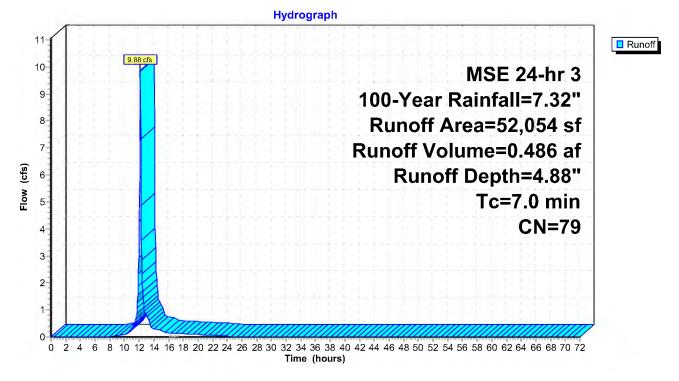
Summary for Subcatchment 1E: To site sewer


Runoff 18.74 cfs @ 12.14 hrs, Volume= 1.023 af, Depth= 6.61" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

A	rea (sf)	CN	Description			
	63,533	98	Paved park	ing, HSG D	D	
	17,412	80	>75% Gras	s cover, Go	ood, HSG D	
	80,945	94	Weighted A	verage		
	17,412		21.51% Pei	rvious Area	3	
	63,533		78.49% Imp	pervious Ar	rea	
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
7.0					Direct Entry,	
					-	

Subcatchment 1E: To site sewer

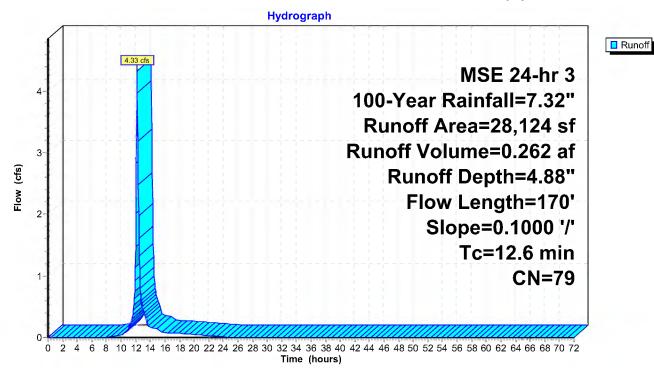

Summary for Subcatchment 2E: Direct to onsite wetland

Runoff = 9.88 cfs @ 12.14 hrs, Volume= 0.486 af, Depth= 4.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

Area (sf)	CN	N Description			
0	98	Paved park	ing, HSG D	D	
52,054	79	Woods/gras	ss comb., C	Good, HSG D	
52,054 52,054 Tc Lengtl (min) (feet	n Sloj			/ Description	
7.0				Direct Entry,	

Subcatchment 2E: Direct to onsite wetland

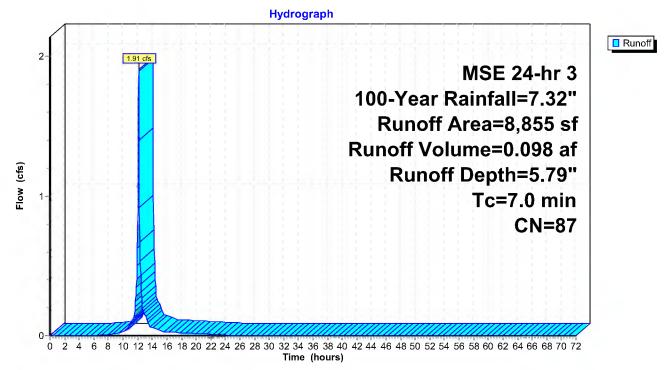

Summary for Subcatchment 3E: Runoff to offsite wetland (N)

Runoff = 4.33 cfs @ 12.20 hrs, Volume= 0.262 af, Depth= 4.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

_	A	rea (sf)	CN I	Description			
	0 98 Paved parking, HSG D						
_	28,124 79 Woods/grass comb., Good, HSG D						
		28,124	79 N	Neighted A	verage		
		28,124		100.00% Pe	ervious Are	а	
	Тс	Length	Slope	~	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	11.9	100	0.1000	0.14		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 2.86"	
	0.7	70	0.1000	1.58		Shallow Concentrated Flow,	
_						Woodland Kv= 5.0 fps	
	12.6	170	Total				

Subcatchment 3E: Runoff to offsite wetland (N)

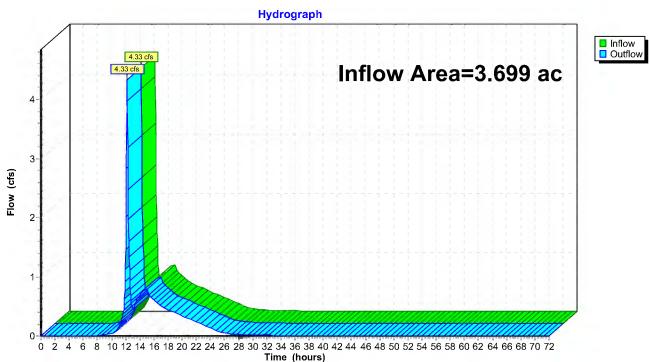

Summary for Subcatchment 4E: Runoff to Wazata Blvd (S)

Runoff = 1.91 cfs @ 12.14 hrs, Volume= 0.098 af, Depth= 5.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

A	rea (sf)	CN	Description			
	3,630	98	Paved park	ing, HSG D)	
	5,225	80	>75% Gras	s cover, Go	bod, HSG D	
	8,855	87	Weighted A	verage		
	5,225		59.01% Pe	rvious Area	I	
	3,630		40.99% Impervious Area			
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description	
7.0					Direct Entry,	

Subcatchment 4E: Runoff to Wazata Blvd (S)

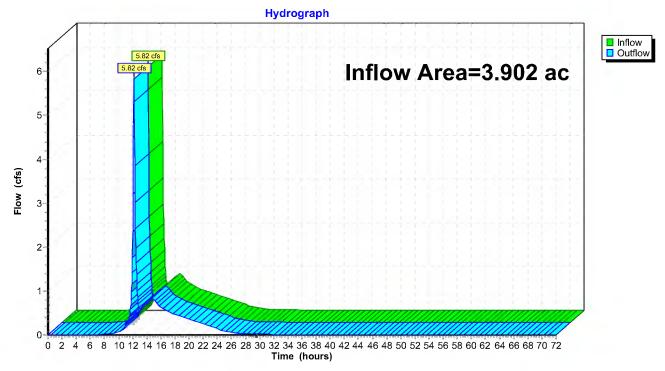


Summary for Reach 1R: Total to offsite wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	3.699 ac, 39.43% Impervious, Inflow Depth = 1.99" for 100-Year event
Inflow	=	4.33 cfs @ 12.20 hrs, Volume= 0.612 af
Outflow	=	4.33 cfs @ 12.20 hrs, Volume= 0.612 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach 1R: Total to offsite wetland

Summary for Reach 2R: total existing

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	3.902 ac, 3	9.51% Impe	ervious,	Inflow De	pth =	2.18"	for 10	0-Year event
Inflow	=	5.82 cfs @	12.18 hrs,	Volume	= (0.710	af		
Outflow	=	5.82 cfs @	12.18 hrs,	Volume	= (0.710	af, Atte	en= 0%	,Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 2R: total existing

Summary for Pond Wtld Exs: Existing Wetland

Inflow Are	a =	3.053 ac, 47.77% Impervious, Inflow Depth = 5.93" for 100-Year event
Inflow	=	28.61 cfs @ 12.14 hrs, Volume= 1.509 af
Outflow	=	0.66 cfs @ 15.05 hrs, Volume= 0.350 af, Atten= 98%, Lag= 174.5 min
Primary	=	0.66 cfs @ 15.05 hrs, Volume= 0.350 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 918.22' @ 15.05 hrs Surf.Area= 27,541 sf Storage= 54,202 cf

Plug-Flow detention time= 465.9 min calculated for 0.350 af (23% of inflow) Center-of-Mass det. time= 334.2 min (1,103.1 - 768.9)

Volume	Inver	t Avail.Sto	rage Storage	Description		
#1	916.00)' 76,78	34 cf Custom	n Stage Data (Pr	ismatic)Listed below ((Recalc)
_	_					
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
916.0)0	21,538	0	0		
917.0)0	24,128	22,833	22,833		
918.0)0	26,828	25,478	48,311		
919.0	00	30,118	28,473	76,784		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	916.35'	15.0" Round	d ocs outlet L= [·]	18.0' Ke= 0.900	
	-		Inlet / Outlet I	Invert= 916.35' / 9	916.22' S= 0.0072 '/'	Cc= 0.900
			n= 0.010, Flo	ow Area= 1.23 sf		
#2	Device 1	918.08'	4.0' long ocs	s weir wall 2 End	d Contraction(s)	
#3	Device 2	917.07'	15.0" Round	d ocs inlet L= 12	2.0' Ke= 0.900	
			Inlet / Outlet I	Invert= 917.07' / 9	916.39' S= 0.0567 '/'	Cc= 0.900
			n= 0.010, Flo	ow Area= 1.23 sf		

Primary OutFlow Max=0.66 cfs @ 15.05 hrs HW=918.22' TW=0.00' (Dynamic Tailwater)

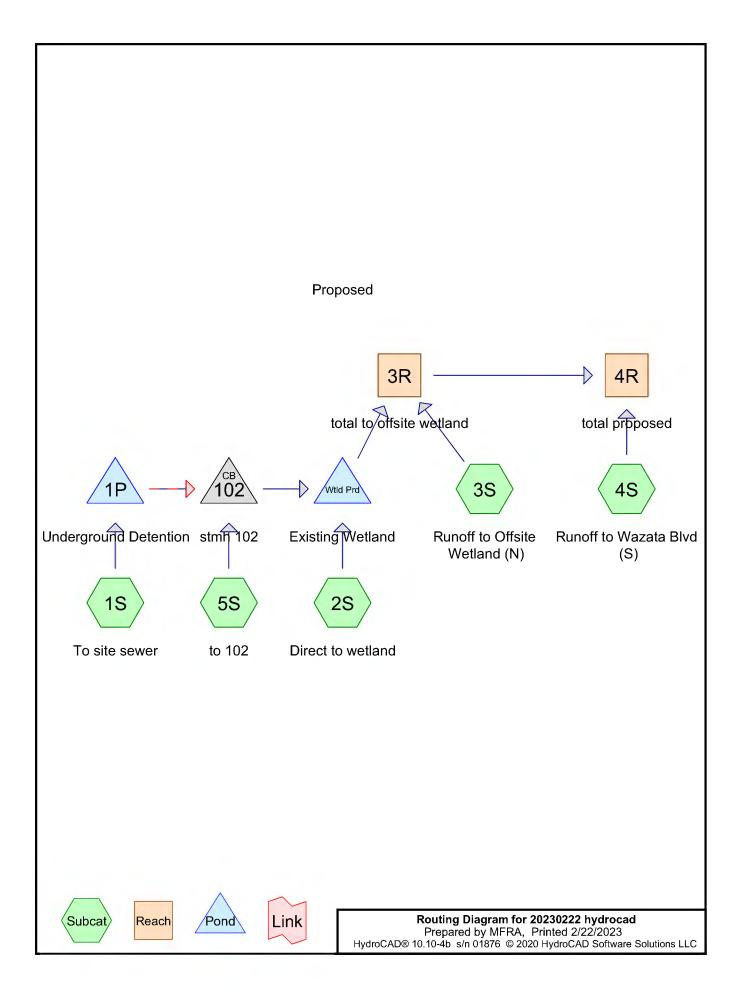
-1=ocs outlet (Passes 0.66 cfs of 5.20 cfs potential flow)

2=ocs weir wall (Weir Controls 0.66 cfs @ 1.21 fps) -3=ocs inlet (Passes 0.66 cfs of 1.66 cfs potential flow)

Printed 2/20/2023

Existing

Existing MSE 24-hr 3 100-Year Rainfall=7.32" Printed 2/20/2023 ns LLC Page 46


Hydrograph Inflow
 Primary 32 28.61 cfs 30 Inflow Area=3.053 ac 28 Peak Elev=918.22' 26 24 Storage=54,202 cf 22-20 18 Flow (cfs) 16 14 12-10 8 6 4 2 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond Wtld Exs: Existing Wetland

Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond Wtld Exs: Existing Wetland

			_		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
916.00	21,538	0	918.55	28,637	63,564
916.05	21,667	1,080	918.60	28,802	65,000
916.10	21,797	2,167	918.65	28,966	66,444
916.15	21,926	3,260	918.70	29,131	67,897
916.20	22,056	4,359	918.75	29,296	69,357
916.25	22,186	5,465	918.80	29,460	70,826
916.30	22,315	6,578	918.85	29,625	72,303
916.35	22,445	7,697	918.90	29,789	73,789
916.40	22,574	8,822	918.95	29,954	75,282
916.45	22,704	9,954	919.00	30,118	76,784
916.50	22,833	11,093			
916.55	22,962	12,238			
916.60	23,092	13,389			
916.65	23,221	14,547			
916.70	23,351	15,711			
916.75	23,481	16,882			
916.80	23,610	18,059			
	,				
916.85	23,740	19,243			
916.90	23,869	20,433			
916.95	23,999	21,630			
917.00	24,128	22,833			
917.05	24,263	24,043			
917.10	24,398	25,259			
917.15	24,533	26,483			
917.20	24,668	27,713			
917.25	24,803	28,949			
917.30	24,938	30,193			
917.35	25,073	31,443			
917.40	25,208	32,700			
917.45	25,343	33,964			
917.50	25,478	35,235			
917.55	25,613	36,512			
917.60	25,748	37,796			
917.65		39,087			
	25,883	40,384			
917.70	26,018				
917.75	26,153	41,688			
917.80	26,288	42,999			
917.85	26,423	44,317			
917.90	26,558	45,642			
917.95	26,693	46,973			
918.00	26,828	48,311			
918.05	26,992	49,657			
918.10	27,157	51,010			
918.15	27,321	52,372			
918.20	27,486	53,742			
918.25	27,651	55,121			
918.30	27,815	56,507			
918.35	27,980	57,902			
918.40	28,144	59,305			
918.45	28,309	60,717			
918.50	28,473	62,136			
010.00	20,770	52,100			
			I		

	Proposed
20230222 hydrocad	
Prepared by MFRA	Printed 2/22/2023
HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC	Page 2

Project Notes

Rainfall events imported from "NRCS-Rain.txt" for 5327 MN Hennepin

Proposed

Printed 2/22/2023 Page 3

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	MSE 24-hr	3	Default	24.00	1	2.48	2
2	2-Year	MSE 24-hr	3	Default	24.00	1	2.86	2
3	10-Year	MSE 24-hr	3	Default	24.00	1	4.26	2
4	100-Year	MSE 24-hr	3	Default	24.00	1	7.32	2

Rainfall Events Listing (selected events)

Proposed

20230222 hydrocad	
Prepared by MFRA	Printed 2/22/2023
HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC	Page 4

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.372	80	>75% Grass cover, Good, HSG D (1S, 2S, 4S, 5S)
1.980	98	Paved parking, HSG D (1S, 2S, 3S, 4S, 5S)
0.560	79	Woods/grass comb., Good, HSG D (3S)
3.913	89	TOTAL AREA

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
3.913	HSG D	1S, 2S, 3S, 4S, 5S
0.000	Other	
3.913		TOTAL AREA

20230222 hydrocad	Toposed
Prepared by MFRA	Printed 2/22/2023
HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC	Page 6

Glouina Covers (selected hodes)								
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers	
0.000	0.000	0.000	1.372	0.000	1.372	>75% Grass cover, Good	1S, 2S, 4S, 5S	
0.000	0.000	0.000	1.980	0.000	1.980	Paved parking	1S, 2S, 3S, 4S, 5S	
0.000 0.000	0.000 0.000	0.000 0.000	0.560 3.913	0.000 0.000	0.560 3.913	Woods/grass comb., Good TOTAL AREA	3S	

Ground Covers (selected nodes)

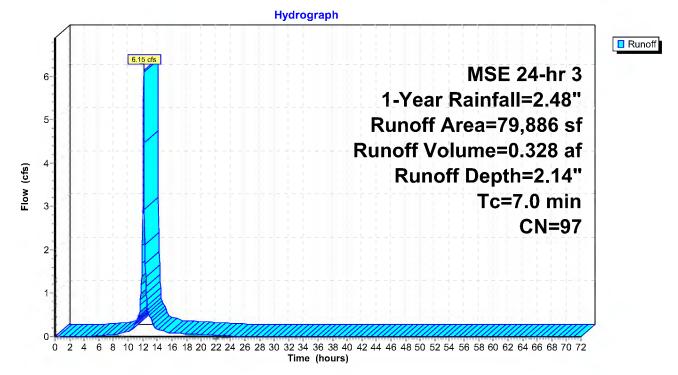
Proposed

	Proposed
20230222 hydrocad Prepared by MFRA	Printed 2/22/2023
HydroCAD® 10.10-4b s/n 01876 © 2020 HydroCAD Software Solutions LLC	Page 7

			-						
Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	1P	920.70	920.17	108.0	0.0049	0.011	0.0	24.0	0.0
2	102	919.93	918.80	281.0	0.0040	0.011	0.0	24.0	0.0
3	Wtld Prd	916.35	916.22	18.0	0.0072	0.010	0.0	15.0	0.0
4	Wtld Prd	917.07	916.39	12.0	0.0567	0.010	0.0	15.0	0.0

Pipe Listing (selected nodes)

20230222 hydrocad Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 Hyd	Proposed MSE 24-hr 3 1-Year Rainfall=2.48" Printed 2/22/2023 droCAD Software Solutions LLC Page 8			
Time span=0.0 Runoff by SCS T	0-72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-CN nd method - Pond routing by Dyn-Stor-Ind method			
Subcatchment1S: To site sewer	Runoff Area=79,886 sf 95.12% Impervious Runoff Depth=2.14" Tc=7.0 min CN=97 Runoff=6.15 cfs 0.328 af			
Subcatchment2S: Direct to wetland	Runoff Area=47,288 sf 6.48% Impervious Runoff Depth=0.93" Tc=7.0 min CN=81 Runoff=1.74 cfs 0.084 af			
Subcatchment3S: Runoff to Offsite Flow Length=260	Runoff Area=25,698 sf 5.00% Impervious Runoff Depth=0.88" Slope=0.0200 '/' Tc=17.8 min CN=80 Runoff=0.59 cfs 0.043 af			
Subcatchment4S: Runoff to Wazata Blve	d Runoff Area=10,922 sf 16.27% Impervious Runoff Depth=1.04" Tc=7.0 min CN=83 Runoff=0.45 cfs 0.022 af			
Subcatchment5S: to 102	Runoff Area=6,651 sf 62.29% Impervious Runoff Depth=1.59" Tc=7.0 min CN=91 Runoff=0.41 cfs 0.020 af			
Reach 3R: total to offsite wetland	Inflow=0.59 cfs 0.043 af Outflow=0.59 cfs 0.043 af			
Reach 4R: total proposed	Inflow=0.84 cfs 0.065 af Outflow=0.84 cfs 0.065 af			
Pond 1P: Underground Detention	Peak Elev=926.39' Storage=7,086 cf Inflow=6.15 cfs 0.328 af Outflow=0.48 cfs 0.328 af			
Pond 102: stmh 102 24.0" Round	Peak Elev=920.37' Inflow=0.89 cfs 0.348 af Culvert n=0.011 L=281.0' S=0.0040 '/' Outflow=0.89 cfs 0.348 af			
Pond Wtld Prd: Existing Wetland	Peak Elev=916.83' Storage=18,813 cf Inflow=2.64 cfs 0.432 af Outflow=0.00 cfs 0.000 af			
Total Runoff Area = 3.913 ac Runoff Volume = 0.497 af Average Runoff Depth = 1.52 49.39% Pervious = 1.933 ac 50.61% Impervious = 1.980 ac				

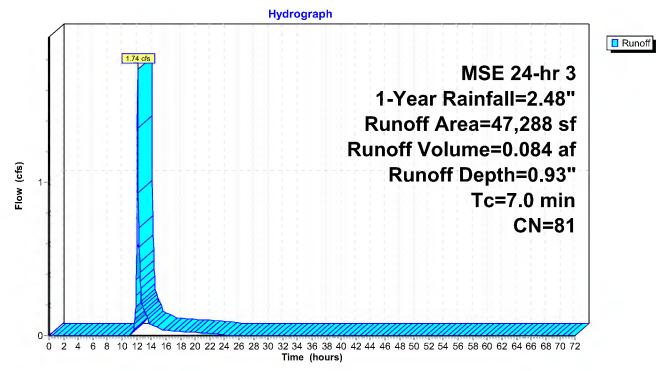

Summary for Subcatchment 1S: To site sewer

Runoff = 6.15 cfs @ 12.14 hrs, Volume= 0.328 af, Depth= 2.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.48"

A	rea (sf)	CN	Description		
	75,991	98	Paved park	ing, HSG D	D
	3,895	80	>75% Gras	s cover, Go	ood, HSG D
	79,886	97	Weighted A	verage	
	3,895		4.88% Perv	ious Area	
	75,991		95.12% Imp	pervious Ar	rea
Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
7.0					Direct Entry,
					-

Subcatchment 1S: To site sewer

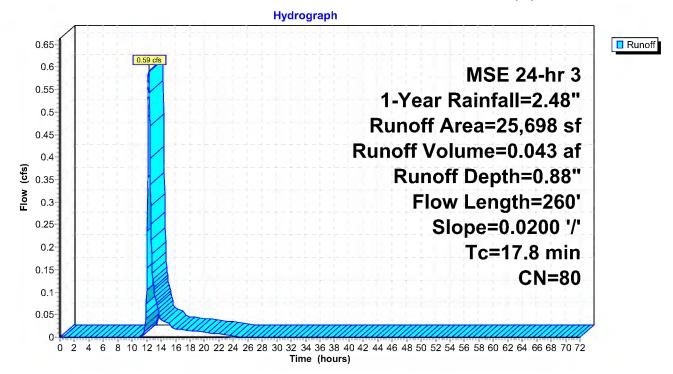

Summary for Subcatchment 2S: Direct to wetland

Runoff =	1.74 cfs @	12.15 hrs,	Volume=	0.084 af.	Depth= 0.93"
----------	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.48"

A	rea (sf)	CN	Description		
	3,064	98	Paved park	ing, HSG D	D
	44,224	80	>75% Ġras	s cover, Go	ood, HSG D
	47,288	81	Weighted A	verage	
	44,224		93.52% Pei	vious Area	3
	3,064		6.48% Impe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
7.0					Direct Entry,

Subcatchment 2S: Direct to wetland

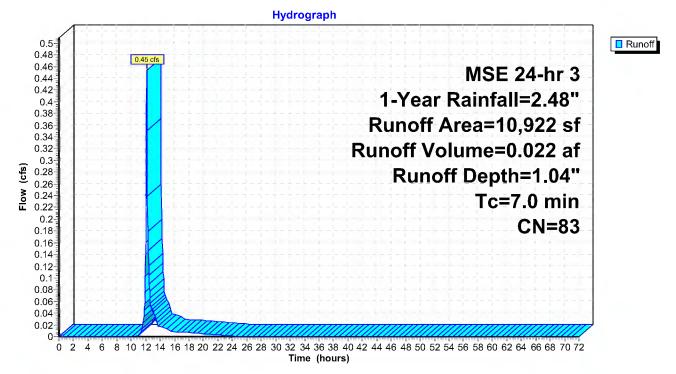

Summary for Subcatchment 3S: Runoff to Offsite Wetland (N)

Runoff = 0.59 cfs @ 12.28 hrs, Volume= 0.043 af, Depth= 0.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.48"

_	A	rea (sf)	CN E	Description							
		1,286	98 F	98 Paved parking, HSG D							
_		24,412	79 V	Voods/gras	ss comb., C	Good, HSG D					
		25,698	80 V	Veighted A	verage						
		24,412	ę	95.00% Pei	rvious Area						
		1,286	5	5.00% Impe	ervious Area	а					
	_				_						
	ŢĊ	Length	Slope	-	Capacity	Description					
_	(min)	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)						
	15.1	100	0.0200	0.11		Sheet Flow, SWALE					
						Grass: Dense n= 0.240 P2= 2.86"					
	2.7	160	0.0200	0.99		Shallow Concentrated Flow,					
_						Short Grass Pasture Kv= 7.0 fps					
	17.8	260	Total								

Subcatchment 3S: Runoff to Offsite Wetland (N)

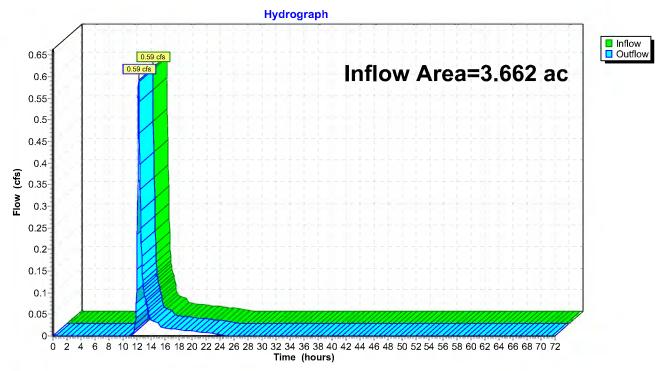

Summary for Subcatchment 4S: Runoff to Wazata Blvd (S)

Runoff = 0.45 cfs @ 12.15 hrs, Volume= 0.022 af, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.48"

A	rea (sf)	CN	Description		
	1,777	98	Paved park	ing, HSG D	C
	9,145	80	>75% Gras	s cover, Go	ood, HSG D
	10,922	83	Weighted A	verage	
	9,145		83.73% Pe	rvious [¯] Area	a
	1,777		16.27% Imp	pervious Ar	rea
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
7.0					Direct Entry,

Subcatchment 4S: Runoff to Wazata Blvd (S)

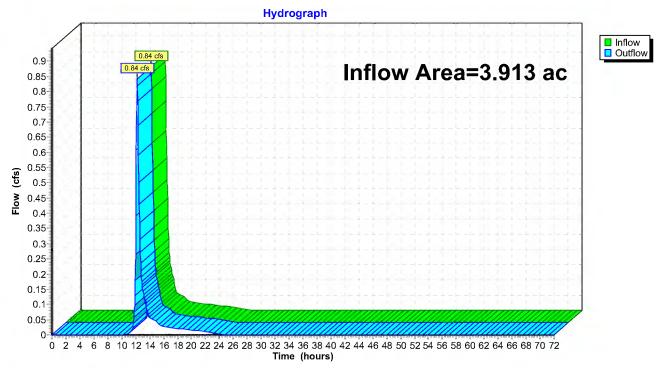

ydroCAI	D® 10.10-	<u>4b s/n</u>	<u>01876</u>	202	0 Hydro	CA	D Soft	ware S	Solutio	ns LL	.C					Pag	<u>le 13</u>
			Sı	umm	ary f	or S	Subc	atchi	nent	5S:	to	0 102	2				
lunoff	=	0.41	cfs @	12.14	hrs, \	√olu	me=		0.02	20 af,	D	epth=	= 1.5	9"			
	SCS TF				CS, W	'eigł	nted-C	N, Tir	ne Sp	an=	0.0	0-72.	.00 h	rs, dt=	= 0.05	5 hrs	
	nr 3 1-Y																
Ar	<u>ea (sf)</u> 4,143	<u>CN</u> 98	Descrip Paved		na HS	GE)										
	2,508	80	>75% (Grass	cover	, Go		SG D									
	6,651 2,508	91	Weight 37.71%														
	4,143		62.29%														
Тс	Length	Slop	e Velo	citv	Capa	citv	Des	criptio	n								
(min)	(feet)	(ft/fl			•	sfs)											
7.0							Dire	ct En	try,								
					Subo	ato	hme	nt 5S	S: to	102							
					н	ydro	graph									1	
0.46 0.44			+-+-+			- + - 1			- 1 - <u>1</u>	- +				- - - -		Rune	off
0.42-		0.41 cfs	<u>s</u> - +						- + - + -	- + 		MS	E 2	4-h	r 3		
0.38- 0.36-									1-Y	ear	R	ainf	fall:	=2.4	8"		
0.34- 0.32-									Ru	noff	F A	rea	=6,	651	sf		
0.3- 0.28-					+	- +		Ru	nof	f Vo	olu	ıme	=0.	020	af		
(s) 0.26 0.24									R	ino	ff	Dep	oth	=1.5	9"		
8 0.22- ■ 0.2-	1								$\begin{array}{c} 1 & 1 \\ \uparrow & \uparrow \\ 1 & 1 \end{array}$	 		1 1 1		.0 m	1		
0.18-0.16-						- +							(CN=	91		
0.14																	
0.1									1 1 † † 1 1	 							
0.06					45434												
0.04																	

Summary for Reach 3R: total to offsite wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	3.662 ac, 52.96% Impervious, Inflow Depth = 0.14" for 1-Year event	
Inflow	=	0.59 cfs @ 12.28 hrs, Volume= 0.043 af	
Outflow	=	0.59 cfs @ 12.28 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.0 min	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach 3R: total to offsite wetland

Summary for Reach 4R: total proposed

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	3.913 ac, 50.61% Impervious, Inflow Depth = 0.20" for 1-Year event
Inflow	=	0.84 cfs @ 12.20 hrs, Volume= 0.065 af
Outflow	=	0.84 cfs @ 12.20 hrs, Volume= 0.065 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 4R: total proposed

Summary for Pond 1P: Underground Detention

Inflow Area =	1.834 ac, 95.12% Impervious, Inflow Depth = 2.14" for 1-Ye	ear event
Inflow =	6.15 cfs @ 12.14 hrs, Volume= 0.328 af	
Outflow =	0.48 cfs @ 12.05 hrs, Volume= 0.328 af, Atten= 92%,	Lag= 0.0 min
Primary =	0.48 cfs @ 12.05 hrs, Volume= 0.328 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 926.39'@ 12.91 hrs Surf.Area= 3,774 sf Storage= 7,086 cf Flood Elev= 926.76' Surf.Area= 3,774 sf Storage= 7,920 cf

Plug-Flow detention time= 128.2 min calculated for 0.327 af (100% of inflow) Center-of-Mass det. time= 128.2 min (893.6 - 765.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	922.50'	0 cf	37.00'W x 102.00'L x 6.00'H Field A
			22,644 cf Overall - 9,817 cf Embedded = 12,827 cf x 0.0% Voids
#2A	923.00'	9,817 cf	CMP Round 60 x 25 Inside #1
			Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf
			Overall Size= 60.0"W x 60.0"H x 20.00'L
			25 Chambers in 5 Rows
#3	928.00'	137 cf	riser storage (Prismatic)Listed below (Recalc)
		9,954 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
928.0)0	65	0	0				
930.10		65	137	137				
Device	Routing	Invert	Outlet Devices					
#1	Primary	920.70'		/ert= 920.70	L= 108.0' Ke= 0.900 920.17' S= 0.0049 '/' Cc= 0.900			
#2 #3 #4	Device 2 Device 2 Device 2	923.00'	 0.480 cfs 18" phospho, 14 cartridge 4.0" Vert. device inlet C= 0.600 Limited to weir flow at low heads 4.0' long device bypass weir 2 End Contraction(s) 					

Primary OutFlow Max=0.48 cfs @ 12.05 hrs HW=924.58' TW=920.32' (Dynamic Tailwater) -1=device outlet (Passes 0.48 cfs of 20.26 cfs potential flow)

-2=18" phospho, 14 cartridge (Constant Controls 0.48 cfs) -3=device inlet (Passes 0.48 cfs of 0.50 cfs potential flow)

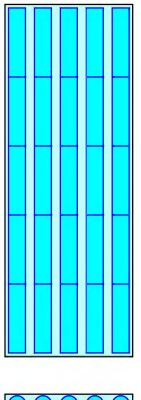
-4=device bypass weir (Controls 0.00 cfs)

Pond 1P: Underground Detention - Chamber Wizard Field A

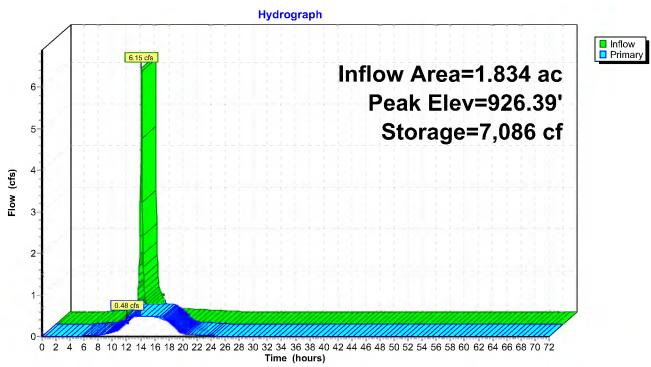
Chamber Model = CMP Round 60 (Round Corrugated Metal Pipe)

Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf Overall Size= 60.0"W x 60.0"H x 20.00'L

60.0" Wide + 30.0" Spacing = 90.0" C-C Row Spacing


5 Chambers/Row x 20.00' Long = 100.00' Row Length +12.0" End Stone x 2 = 102.00' Base Length 5 Rows x 60.0" Wide + 30.0" Spacing x 4 + 12.0" Side Stone x 2 = 37.00' Base Width 6.0" Stone Base + 60.0" Chamber Height + 6.0" Stone Cover = 6.00' Field Height

25 Chambers x 392.7 cf = 9,817.5 cf Chamber Storage


22,644.0 cf Field - 9,817.5 cf Chambers = 12,826.5 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 9,817.5 cf = 0.225 afOverall Storage Efficiency = 43.4%Overall System Size = $102.00' \times 37.00' \times 6.00'$

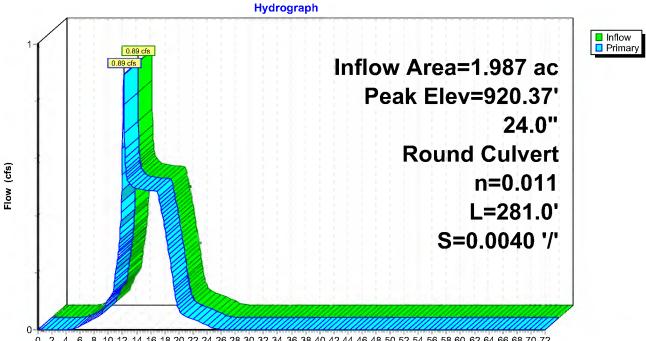
25 Chambers 838.7 cy Field 475.1 cy Stone

Pond 1P: Underground Detention

Stage-Area-Storage for Pond 1P: Underground Detention

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
922.50	0	927.60	9,450
922.60	0	927.70	9,577
922.70	Ő	927.80	9,686
922.80	0	927.90	9,770
922.00	0		9,817
923.00	0	928.00 928.10	
923.00 923.10	47		9,824
		928.20	9,830
923.20	132	928.30	9,837
923.30	240	928.40	9,843
923.40	368	928.50	9,850
923.50	511	928.60	9,856
923.60	667	928.70	9,863
923.70	835	928.80	9,869
923.80	1,014	928.90	9,876
923.90	1,202	929.00	9,882
924.00	1,398	929.10	9,889
924.10	1,601	929.20	9,895
924.20	1,812	929.30	9,902
924.30	2,028	929.40	9,908
924.40	2,250	929.50	9,915
924.50	2,477	929.60	9,921
924.60	2,708	929.70	9,928
924.70	2,943	929.80	9,934
924.80	3,182	929.90	9,941
924.90	3,423	930.00	9,947
925.00	3,667	930.10	9,954
925.10	3,913		,
925.20	4,161		
925.30	4,409		
925.40	4,659		
925.50	4,909		
925.60	5,159		
925.70	5,408		
925.80	5,657		
925.90	5,904		
926.00	6,150		
926.10	6,394		
926.20	6,636		
926.30	6,874		
926.40	7,109		
926.50	7,340		
926.60	7,567		
926.70	7,789		
926.80 926.90	8,006 8,216		
927.00	8,420 8,616		
927.10	8,616		
927.20	8,804		
927.30	8,982		
927.40	9,150		
927.50	9,307		

Summary for Pond 102: stmh 102


[57] Hint: Peaked at 920.37' (Flood elevation advised)

Inflow Area =	1.987 ac, 92.60% Impervious, Inflow I	Depth = 2.10" for 1-Year event
Inflow =	0.89 cfs @ 12.14 hrs, Volume=	0.348 af
Outflow =	0.89 cfs @ 12.14 hrs, Volume=	0.348 af, Atten= 0%, Lag= 0.0 min
Primary =	0.89 cfs @ 12.14 hrs, Volume=	0.348 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 920.37' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	919.93'	24.0" Round Culvert L= 281.0' Ke= 0.900 Inlet / Outlet Invert= 919.93' / 918.80' S= 0.0040 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=0.88 cfs @ 12.14 hrs HW=920.36' TW=916.17' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.88 cfs @ 1.77 fps)

Pond 102: stmh 102

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Stage-Area-Storage for Pond 102: stmh 102

LevalionStorage (acre-feet)LevalionStorage (acre-feet)919.930.000920.950.000919.950.000920.970.000919.990.000921.010.000920.010.000921.030.000920.050.000921.050.000920.070.000921.070.000920.110.000921.130.000920.120.000921.130.000920.130.000921.140.000920.140.000921.150.000920.150.000921.170.000920.170.000921.230.000920.210.000921.240.000920.250.000921.250.000920.270.000921.330.000920.330.000921.330.000920.340.000921.370.000920.350.000921.410.000920.360.000921.430.000920.370.000921.440.000920.380.000921.450.000920.430.000921.450.000920.440.000921.470.000920.550.000921.570.000920.560.000921.570.000920.570.000921.550.000920.570.000921.770.000920.570.000921.770.000920.570.000921.770.	Floretion	Character		Otomore
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Storage	Elevation	Storage
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	920.31	0.000	921.33	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	920.33	0.000	921.35	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	920.35	0.000		0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	920.37	0.000		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
920.670.000921.690.000920.690.000921.710.000920.710.000921.730.000920.730.000921.750.000920.750.000921.770.000920.770.000921.790.000920.790.000921.810.000920.810.000921.850.000920.830.000921.850.000920.850.000921.870.000920.870.000921.890.000920.890.000921.910.000				
920.690.000921.710.000920.710.000921.730.000920.730.000921.750.000920.750.000921.770.000920.770.000921.790.000920.790.000921.810.000920.810.000921.830.000920.830.000921.850.000920.850.000921.870.000920.870.000921.890.000920.890.000921.910.000				
920.710.000921.730.000920.730.000921.750.000920.750.000921.770.000920.770.000921.790.000920.790.000921.810.000920.810.000921.830.000920.830.000921.850.000920.850.000921.870.000920.870.000921.890.000920.890.000921.910.000				
920.730.000921.750.000920.750.000921.770.000920.770.000921.790.000920.790.000921.810.000920.810.000921.830.000920.830.000921.850.000920.850.000921.870.000920.870.000921.890.000920.910.000921.910.000				
920.750.000921.770.000920.770.000921.790.000920.790.000921.810.000920.810.000921.830.000920.830.000921.850.000920.850.000921.870.000920.870.000921.890.000920.890.000921.910.000920.910.000921.930.000				
920.770.000921.790.000920.790.000921.810.000920.810.000921.830.000920.830.000921.850.000920.850.000921.870.000920.870.000921.890.000920.890.000921.910.000920.910.000921.930.000				
920.790.000921.810.000920.810.000921.830.000920.830.000921.850.000920.850.000921.870.000920.870.000921.890.000920.890.000921.910.000920.910.000921.930.000				
920.810.000921.830.000920.830.000921.850.000920.850.000921.870.000920.870.000921.890.000920.890.000921.910.000920.910.000921.930.000				
920.830.000921.850.000920.850.000921.870.000920.870.000921.890.000920.890.000921.910.000920.910.000921.930.000				
920.850.000921.870.000920.870.000921.890.000920.890.000921.910.000920.910.000921.930.000				
920.870.000921.890.000920.890.000921.910.000920.910.000921.930.000				
920.890.000921.910.000920.910.000921.930.000				
920.91 0.000 921.93 0.000				

Summary for Pond Wtld Prd: Existing Wetland

Inflow Area =	3.072 ac, 62.17% Impervious, Inflow I	Depth = 1.69" for 1-Year event
Inflow =	2.64 cfs @ 12.15 hrs, Volume=	0.432 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 916.83' @ 37.35 hrs Surf.Area= 23,693 sf Storage= 18,813 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	t Avail.Stor	rage Storage	e Description		
#1	916.00	¹ 76,78	34 cf Custor	n Stage Data (Prisn	n atic) Listed below (F	Recalc)
	_			•		
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
916.0	00	21,538	0	0		
917.0	0	24,128	22,833	22,833		
918.0	0	26,828	25,478	48,311		
919.0	0	30,118	28,473	76,784		
Device	Routing	Invert	Outlet Devic	es		
#1	Primary	916.35'	15.0" Roun	d ocs outlet L= 18.0	0' Ke= 0.900	
	-		Inlet / Outlet	Invert= 916.35' / 916	3.22' S= 0.0072 '/'	Cc= 0.900
			n= 0.010, FI	ow Area= 1.23 sf		
#2	Device 1	918.08'	4.0' long oc	s weir wall 2 End C	contraction(s)	
#3	Device 2	917.07'	15.0" Roun	d ocs inlet L= 12.0'	Ke= 0.900	
			Inlet / Outlet	Invert= 917.07' / 916	3.39' S= 0.0567 '/'	Cc= 0.900
			n= 0.010, FI	ow Area= 1.23 sf		

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=916.00' TW=0.00' (Dynamic Tailwater)

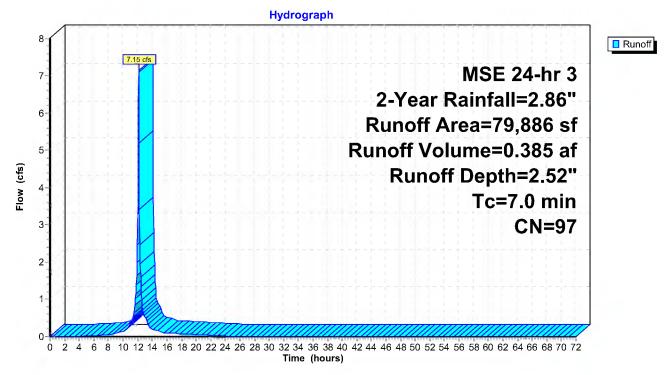
-1=ocs outlet (Controls 0.00 cfs)

2=ocs weir wall (Controls 0.00 cfs) 3=ocs inlet (Controls 0.00 cfs)

Stage-Area-Storage for Pond Wtld Prd: Existing Wetland

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
916.00	21,538	0	918.55	28,637	63,564
916.05	21,667	1,080	918.60	28,802	65,000
916.10	21,797	2,167	918.65	28,966	66,444
916.15	21,926	3,260	918.70	29,131	67,897
916.20	22,056	4,359	918.75	29,296	69,357
916.25	22,186	5,465	918.80	29,460	70,826
916.30	22,315	6,578	918.85	29,625	72,303
916.35	22,445	7,697	918.90	29,789	73,789
916.40	22,574	8,822	918.95	29,954	75,282
916.45	22,704	9,954	919.00	30,118	76,784
916.50	22,833	11,093			
916.55	22,962	12,238			
916.60	23,092	13,389			
916.65	23,221	14,547			
916.70	23,351	15,711			
916.75	23,481	16,882			
916.80	23,610	18,059			
916.85	23,740	19,243			
916.90	23,869	20,433			
916.95	23,999	21,630			
917.00	24,128	22,833			
917.05	24,263	24,043			
917.10	24,203	25,259			
917.15					
	24,533	26,483			
917.20	24,668	27,713			
917.25	24,803	28,949			
917.30	24,938	30,193			
917.35	25,073	31,443			
917.40	25,208	32,700			
917.45	25,343	33,964			
917.50	25,478	35,235			
917.55	25,613	36,512			
917.60	25,748	37,796			
917.65	25,883	39,087			
917.70	26,018	40,384			
917.75	26,153	41,688			
917.80	26,288	42,999			
917.85	26,423	44,317			
917.90	26,558	45,642			
917.95	26,693	46,973			
918.00	26,828	48,311			
918.05	26,992	49,657			
918.10	27,157	51,010			
918.15	27,321	52,372			
918.20	27,486	53,742			
918.25	27,651	55,121			
918.30	27,815	56,507			
918.35	27,980	57,902			
	28,144	59,305			
918.40					
918.45	28,309	60,717			
918.50	28,473	62,136			
			l		

20230222 hydrocad Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 Hyd	Proposed <i>MSE 24-hr 3 2-Year Rainfall=2.86"</i> Printed 2/22/2023 roCAD Software Solutions LLC Page 25
<u></u>	
Runoff by SCS T	0-72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-CN id method . Pond routing by Dyn-Stor-Ind method
Subcatchment1S: To site sewer	Runoff Area=79,886 sf 95.12% Impervious Runoff Depth=2.52" Tc=7.0 min CN=97 Runoff=7.15 cfs 0.385 af
Subcatchment2S: Direct to wetland	Runoff Area=47,288 sf 6.48% Impervious Runoff Depth=1.21" Tc=7.0 min CN=81 Runoff=2.28 cfs 0.109 af
Subcatchment3S: Runoff to Offsite Flow Length=260'	Runoff Area=25,698 sf 5.00% Impervious Runoff Depth=1.15" Slope=0.0200 '/' Tc=17.8 min CN=80 Runoff=0.79 cfs 0.056 af
Subcatchment4S: Runoff to Wazata Blvd	Runoff Area=10,922 sf 16.27% Impervious Runoff Depth=1.33" Tc=7.0 min CN=83 Runoff=0.58 cfs 0.028 af
Subcatchment5S: to 102	Runoff Area=6,651 sf 62.29% Impervious Runoff Depth=1.94" Tc=7.0 min CN=91 Runoff=0.50 cfs 0.025 af
Reach 3R: total to offsite wetland	Inflow=0.79 cfs 0.056 af Outflow=0.79 cfs 0.056 af
Reach 4R: total proposed	Inflow=1.11 cfs 0.084 af Outflow=1.11 cfs 0.084 af
Pond 1P: Underground Detention	Peak Elev=926.88' Storage=8,173 cf Inflow=7.15 cfs 0.385 af Outflow=1.02 cfs 0.385 af
Pond 102: stmh 102 24.0" Round	Peak Elev=920.41' Inflow=1.09 cfs 0.410 af Culvert n=0.011 L=281.0' S=0.0040 '/' Outflow=1.09 cfs 0.410 af
Pond Wtld Prd: Existing Wetland	Peak Elev=916.99' Storage=22,605 cf Inflow=3.26 cfs 0.519 af Outflow=0.00 cfs 0.000 af
Total Runoff Area = 3.913	3 ac Runoff Volume = 0.603 af Average Runoff Depth = 1.85" 49.39% Pervious = 1.933 ac 50.61% Impervious = 1.980 ac

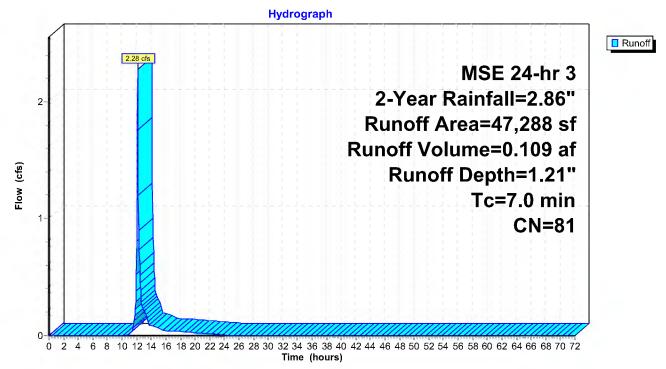

Summary for Subcatchment 1S: To site sewer

Runoff = 7.15 cfs @ 12.14 hrs, Volume= 0.385 af, Depth= 2.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

A	rea (sf)	CN	Description		
	75,991	98	Paved park	ing, HSG D	D
	3,895	80	>75% Gras	s cover, Go	ood, HSG D
	79,886	97	Weighted A	verage	
	3,895		4.88% Perv	vious Area	
	75,991		95.12% lmp	pervious Ar	rea
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
7.0					Direct Entry,

Subcatchment 1S: To site sewer

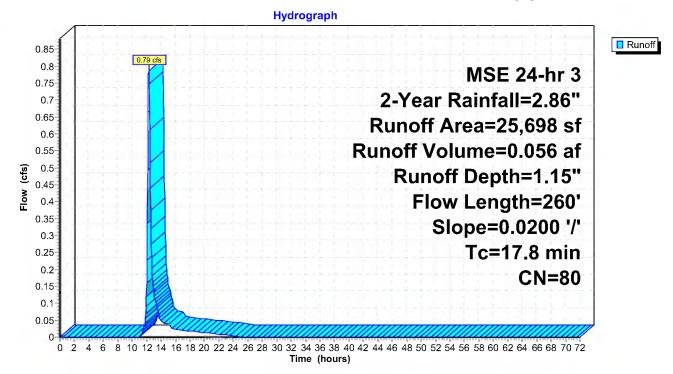

Summary for Subcatchment 2S: Direct to wetland

Runoff = 2.28 cfs @ 12.15 hrs, Volume= 0.109 af, Depth= 1.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

A	rea (sf)	CN	Description		
	3,064	98	Paved park	ing, HSG D)
	44,224	80	>75% Gras	s cover, Go	bod, HSG D
	47,288	81	Weighted A	verage	
	44,224		93.52% Pei	vious Area	1
	3,064		6.48% Impe	ervious Area	a
	_				
Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.0					Direct Entry,
					-

Subcatchment 2S: Direct to wetland

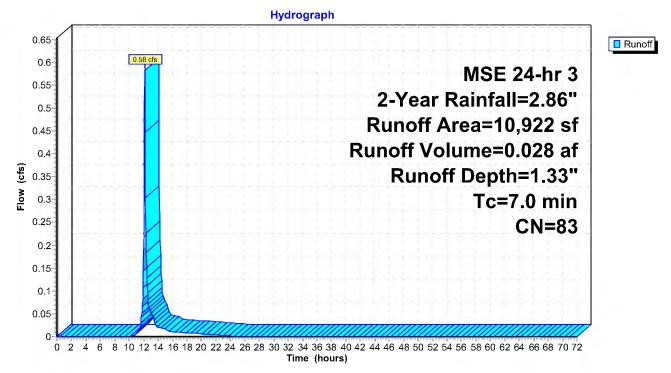

Summary for Subcatchment 3S: Runoff to Offsite Wetland (N)

Runoff = 0.79 cfs @ 12.28 hrs, Volume= 0.056 af, Depth= 1.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

A	rea (sf)	CN E	Description		
	1,286	98 F	aved park	ing, HSG D)
	24,412	79 V	Voods/gras	ss comb., C	Good, HSG D
	25,698	80 V	Veighted A	verage	
	24,412	9	5.00% Pei	rvious Area	
	1,286	5	.00% Impe	ervious Area	a
Тс	Longth	Slope	Velocity	Capacity	Description
(min)	Length (feet)	(ft/ft)	(ft/sec)	(cfs)	Description
15.1	100	0.0200	0.11	(0.0)	Sheet Flow, SWALE
		0.0200	••••		Grass: Dense n= 0.240 P2= 2.86"
2.7	160	0.0200	0.99		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
17.8	260	Total			

Subcatchment 3S: Runoff to Offsite Wetland (N)

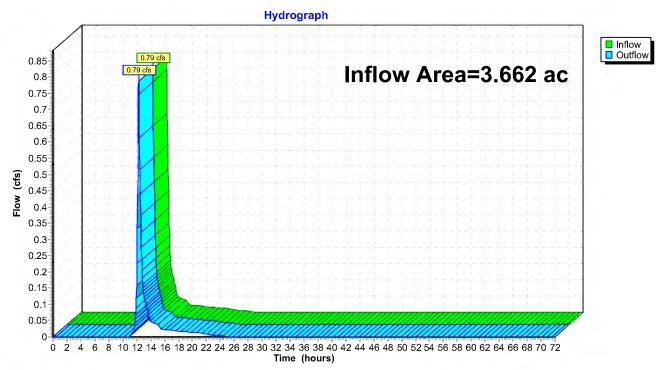

Summary for Subcatchment 4S: Runoff to Wazata Blvd (S)

Runoff = 0.58 cfs @ 12.15 hrs, Volume= 0.028 af, Depth= 1.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.86"

A	rea (sf)	CN	Description		
	1,777	98	Paved park	ing, HSG D	D
	9,145	80	>75% Gras	s cover, Go	ood, HSG D
	10,922	83	Weighted A	verage	
	9,145		83.7 ⁻ 3% Pei	rvious Area	a
	1,777		16.27% lmp	pervious Ar	rea
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
7.0					Direct Entry,

Subcatchment 4S: Runoff to Wazata Blvd (S)

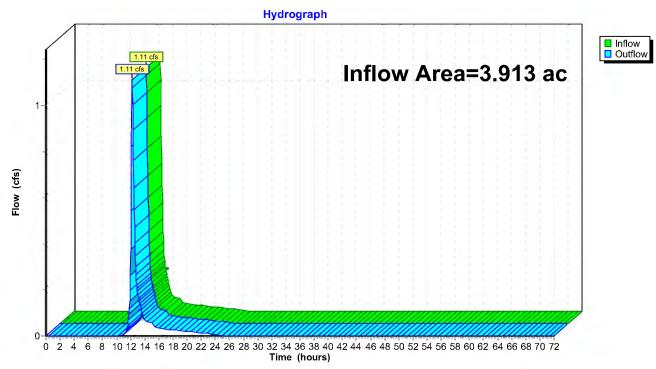

Page 3	d by MFRA D® 10.10-4b_s/n 01876_© 2020 HydroCAD Software Solutions LLC
	Summary for Subcatchment 5S: to 102
	= 0.50 cfs @ 12.14 hrs, Volume= 0.025 af, Depth= 1.94"
hrs	v SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 nr 3_2-Year Rainfall=2.86"
	ea (sf) CN Description
	4,143 98 Paved parking, HSG D 2,508 80 >75% Grass cover, Good, HSG D
	6,651 91 Weighted Average
	2,508 37.71% Pervious Area 4,143 62.29% Impervious Area
	Length Slope Velocity Capacity Description
	(feet) (ft/ft) (ft/sec) (cfs)
	Direct Entry, Subcatchment 5S: to 102
Runoff	
Runoff	Subcatchment 5S: to 102 Hydrograph
Runoff	Subcatchment 5S: to 102 Hydrograph
Runoff	Subcatchment 5S: to 102 Hydrograph MSE 24-hr 3 2-Year Rainfall=2.86" Runoff Area=6,651 sf
Runoff	Subcatchment 5S: to 102 Hydrograph MSE 24-hr 3 2-Year Rainfall=2.86" Runoff Area=6,651 sf Runoff Volume=0.025 af
Runoff	Subcatchment 5S: to 102 Hydrograph MSE 24-hr 3 2-Year Rainfall=2.86" Runoff Area=6,651 sf Runoff Volume=0.025 af Runoff Depth=1.94"
Runoff	Subcatchment 5S: to 102 Hydrograph MSE 24-hr 3 2-Year Rainfall=2.86" Runoff Area=6,651 sf Runoff Volume=0.025 af Runoff Depth=1.94" Tc=7.0 min
Runoff	Subcatchment 5S: to 102 Hydrograph MSE 24-hr 3 2-Year Rainfall=2.86" Runoff Area=6,651 sf Runoff Volume=0.025 af Runoff Depth=1.94"
Runoff	Subcatchment 5S: to 102 Hydrograph MSE 24-hr 3 2-Year Rainfall=2.86" Runoff Area=6,651 sf Runoff Volume=0.025 af Runoff Depth=1.94" Tc=7.0 min

Summary for Reach 3R: total to offsite wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	3.662 ac, 52.96% Impervious, Inflow Depth = 0.18" for 2-Yea	ar event
Inflow =	=	0.79 cfs @ 12.28 hrs, Volume= 0.056 af	
Outflow =	=	0.79 cfs @ 12.28 hrs, Volume= 0.056 af, Atten= 0%, La	ag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach 3R: total to offsite wetland

Summary for Reach 4R: total proposed

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	3.913 ac, 50.61% Impervious, Inflow Depth = 0.26" for 2-Year event
Inflow	=	1.11 cfs @ 12.20 hrs, Volume= 0.084 af
Outflow	=	1.11 cfs @ 12.20 hrs, Volume= 0.084 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 4R: total proposed

Summary for Pond 1P: Underground Detention

[58] Hint: Peaked 0.12' above defined flood level

Inflow Area =	1.834 ac, 95.12% Impervious, Inflow Depth = 2.52" for 2-Year event
Inflow =	7.15 cfs @ 12.14 hrs, Volume= 0.385 af
Outflow =	1.02 cfs @ 12.55 hrs, Volume= 0.385 af, Atten= 86%, Lag= 24.5 min
Primary =	1.02 cfs @ 12.55 hrs, Volume= 0.385 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 926.88' @ 12.55 hrs Surf.Area= 3,774 sf Storage= 8,173 cf Flood Elev= 926.76' Surf.Area= 3,774 sf Storage= 7,920 cf

Plug-Flow detention time= 138.9 min calculated for 0.385 af (100% of inflow) Center-of-Mass det. time= 138.6 min (901.0 - 762.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	922.50'	0 cf	37.00'W x 102.00'L x 6.00'H Field A
			22,644 cf Overall - 9,817 cf Embedded = 12,827 cf x 0.0% Voids
#2A	923.00'	9,817 cf	CMP Round 60 x 25 Inside #1
			Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf
			Overall Size= 60.0"W x 60.0"H x 20.00'L
			25 Chambers in 5 Rows
#3	928.00'	137 cf	riser storage (Prismatic)Listed below (Recalc)
		9,954 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
928.00	65	0	0
930.10	65	137	137

Device	Routing	Invert	Outlet Devices
#1	Primary	920.70'	24.0" Round device outlet L= 108.0' Ke= 0.900
	-		Inlet / Outlet Invert= 920.70' / 920.17' S= 0.0049 '/' Cc= 0.900
			n= 0.011, Flow Area= 3.14 sf
#2	Device 1	923.00'	0.480 cfs 18" phospho, 14 cartridge
#3	Device 2	923.00'	4.0" Vert. device inlet C= 0.600 Limited to weir flow at low heads
#4	Device 1	926.76'	4.0' long device bypass weir 2 End Contraction(s)

Primary OutFlow Max=1.01 cfs @ 12.55 hrs HW=926.88' TW=920.41' (Dynamic Tailwater) **1=device outlet** (Passes 1.01 cfs of 27.18 cfs potential flow)

-2=18" phospho, 14 cartridge (Constant Controls 0.48 cfs)

1-3=device inlet (Passes 0.48 cfs of 0.81 cfs potential flow)

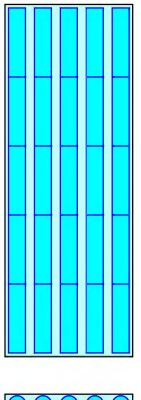
-4=device bypass weir (Weir Controls 0.53 cfs @ 1.13 fps)

Pond 1P: Underground Detention - Chamber Wizard Field A

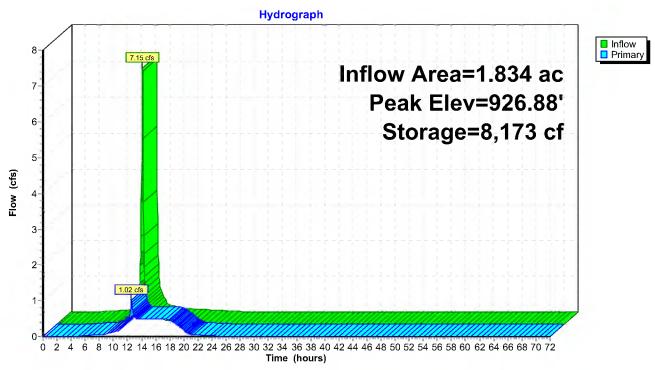
Chamber Model = CMP Round 60 (Round Corrugated Metal Pipe)

Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf Overall Size= 60.0"W x 60.0"H x 20.00'L

60.0" Wide + 30.0" Spacing = 90.0" C-C Row Spacing


5 Chambers/Row x 20.00' Long = 100.00' Row Length +12.0" End Stone x 2 = 102.00' Base Length 5 Rows x 60.0" Wide + 30.0" Spacing x 4 + 12.0" Side Stone x 2 = 37.00' Base Width 6.0" Stone Base + 60.0" Chamber Height + 6.0" Stone Cover = 6.00' Field Height

25 Chambers x 392.7 cf = 9,817.5 cf Chamber Storage


22,644.0 cf Field - 9,817.5 cf Chambers = 12,826.5 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 9,817.5 cf = 0.225 afOverall Storage Efficiency = 43.4%Overall System Size = $102.00' \times 37.00' \times 6.00'$

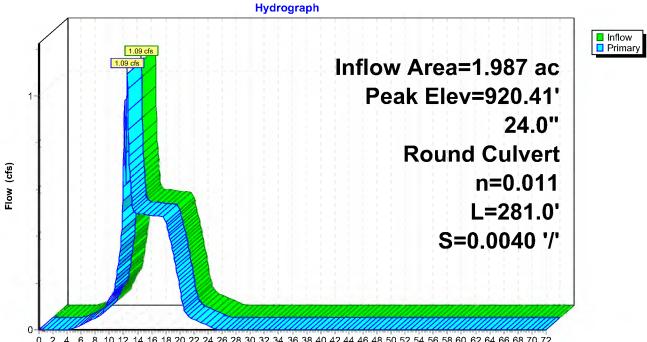
25 Chambers 838.7 cy Field 475.1 cy Stone

Pond 1P: Underground Detention

Stage-Area-Storage for Pond 1P: Underground Detention

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
922.50	0	927.60	9,450
922.60	0	927.70	9,577
922.70	0	927.80	9,686
922.80	0	927.90	9,770
922.90	0	928.00	9,817
923.00	0	928.10	9,824
923.10	47	928.20	9,830
923.20	132	928.30	9,837
923.30	240	928.40	9,843
923.40	368	928.50	9,850
923.50	511	928.60	9,856
923.60	667	928.70	9,863
923.70	835	928.80	9,869
923.80	1,014	928.90	9,876
923.90	1,202	929.00	9,882
924.00	1,398	929.10	9,889
924.10	1,601	929.20	9,895
924.20	1,812	929.30	9,902
924.30	2,028	929.40	9,908
924.40	2,250	929.50	9,915
924.50	2,477	929.60	9,921
924.60	2,708	929.70	9,928
924.70	2,943	929.80	9,934
924.80	3,182	929.90	9,941
924.90	3,423	930.00	9,947
925.00	3,667	930.10	9,954
925.10	3,913	000.10	0,001
925.20	4,161		
925.30	4,409		
925.40	4,659		
925.50	4,909		
925.60	5,159		
925.70	5,408		
925.80	5,657		
925.90	5,904		
926.00	6,150		
926.10	6,394		
926.20	6,636		
926.30	6,874		
926.40	7,109		
926.50	7,340		
926.60	7,567		
926.70	7,789		
926.80	8,006		
926.90	8,216		
927.00	8,420		
927.10	8,616		
927.20	8,804		
927.30	8,982		
927.40	9,150		
927.50	9,307		

Summary for Pond 102: stmh 102


[57] Hint: Peaked at 920.41' (Flood elevation advised)

Inflow Area =	1.987 ac, 92.60% Impervious, Inflow I	Depth = 2.48" for 2-Year event
Inflow =	1.09 cfs @ 12.54 hrs, Volume=	0.410 af
Outflow =	1.09 cfs @ 12.54 hrs, Volume=	0.410 af, Atten= 0%, Lag= 0.0 min
Primary =	1.09 cfs @12.54 hrs, Volume=	0.410 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 920.41'@ 12.54 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	919.93'	24.0" Round Culvert L= 281.0' Ke= 0.900 Inlet / Outlet Invert= 919.93' / 918.80' S= 0.0040 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=1.08 cfs @ 12.54 hrs HW=920.41' TW=916.32' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 1.08 cfs @ 1.86 fps)

Pond 102: stmh 102

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

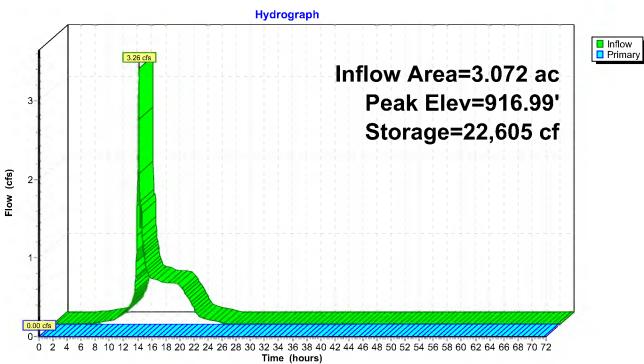
Stage-Area-Storage for Pond 102: stmh 102

Elevation	Storage	Elevation	Storage
(feet)	(acre-feet)	(feet)	(acre-feet)
919.93	0.000	920.95	0.000
919.95	0.000	920.97	0.000
919.97	0.000	920.99	0.000
919.99	0.000	921.01	0.000
920.01	0.000	921.03	0.000
920.03	0.000	921.05	0.000
920.05	0.000	921.07	0.000
920.07	0.000	921.09	0.000
920.09	0.000	921.11	0.000
920.11	0.000	921.13	0.000
920.13	0.000	921.15	0.000
920.15	0.000	921.17	0.000
920.17	0.000	921.19	0.000
920.19	0.000	921.21	0.000
920.21	0.000	921.23	0.000
920.23	0.000	921.25	0.000
920.25	0.000	921.27	0.000
920.27	0.000	921.29	0.000
920.29 920.31	0.000 0.000	921.31 921.33	0.000 0.000
920.31	0.000	921.35	0.000
920.35	0.000	921.33	0.000
920.33	0.000	921.39	0.000
920.39	0.000	921.41	0.000
920.41	0.000	921.43	0.000
920.43	0.000	921.45	0.000
920.45	0.000	921.47	0.000
920.47	0.000	921.49	0.000
920.49	0.000	921.51	0.000
920.51	0.000	921.53	0.000
920.53	0.000	921.55	0.000
920.55	0.000	921.57	0.000
920.57	0.000	921.59	0.000
920.59	0.000	921.61	0.000
920.61	0.000	921.63	0.000
920.63	0.000	921.65	0.000
920.65	0.000	921.67	0.000
920.67 920.69	0.000 0.000	921.69 921.71	0.000
920.09	0.000	921.73	0.000 0.000
920.73	0.000	921.75	0.000
920.75	0.000	921.77	0.000
920.77	0.000	921.79	0.000
920.79	0.000	921.81	0.000
920.81	0.000	921.83	0.000
920.83	0.000	921.85	0.000
920.85	0.000	921.87	0.000
920.87	0.000	921.89	0.000
920.89	0.000	921.91	0.000
920.91	0.000	921.93	0.000
920.93	0.000		
		l	

Summary for Pond Wtld Prd: Existing Wetland

Inflow Area =	3.072 ac, 62.17% Impervious, Inflow I	Depth = 2.03" for 2-Year event
Inflow =	3.26 cfs @ 12.15 hrs, Volume=	0.519 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 916.99'@ 38.25 hrs Surf.Area= 24,104 sf Storage= 22,605 cf


Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	t Avail.Sto	rage Storage	Description		
#1	916.00)' 76,78	34 cf Custom	Stage Data (Pri	ismatic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)		
916.0	0	21,538	0	0		
917.0	0	24,128	22,833	22,833		
918.0	0	26,828	25,478	48,311		
919.0	0	30,118	28,473	76,784		
Device	Routing	Invert	Outlet Device	S		
#1	Primary	916.35'	15.0" Round	l ocs outlet L= 1	18.0' Ke= 0.900	
	-		Inlet / Outlet I	nvert= 916.35' / 9	916.22' S= 0.0072 '/'	Cc= 0.900
			n= 0.010, Flo	w Area= 1.23 sf		
#2	Device 1	918.08'	4.0' long ocs	weir wall 2 End	d Contraction(s)	
#3	Device 2	917.07'	15.0" Round	l ocs inlet L= 12	0' Ke= 0.900	
			Inlet / Outlet I	nvert= 917.07' / 9	916.39' S= 0.0567 '/'	Cc= 0.900
			n= 0.010, Flo	w Area= 1.23 sf		

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=916.00' TW=0.00' (Dynamic Tailwater)

-1=ocs outlet (Controls 0.00 cfs)

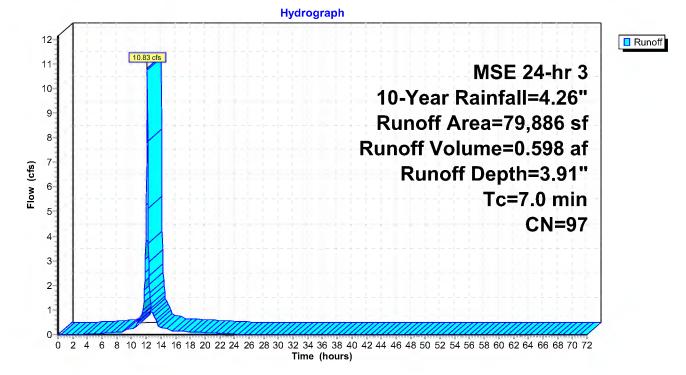
2=ocs weir wall (Controls 0.00 cfs) 3=ocs inlet (Controls 0.00 cfs)

Pond Wtld Prd: Existing Wetland

Stage-Area-Storage for Pond Wtld Prd: Existing Wetland

Elevation Surface Storage (feet) (sq-ft) (cubic-feet) 916.00 21,538 0 916.01 21,677 1,080 916.10 21,797 2,167 916.25 22,056 4,359 916.25 22,166 5,465 918.35 29,460 70,826 916.35 22,445 7,637 916.35 22,445 7,637 916.35 22,445 7,637 916.50 22,333 11,933 916.51 22,962 12,238 916.62 22,704 9,954 916.50 22,862 12,238 916.65 23,262 12,238 916.65 23,262 12,238 916.65 23,261 14,547 916.80 23,610 18,059 916.81 23,740 19,243 917.00 24,283 26,433 917.10 24,338 26,433 917.10 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation	Surface	Storage	Elevation	Surface	Storage
916.05 21.667 1.080 918.60 28.802 65.000 916.10 21.797 2.167 918.65 28.966 66.444 916.15 21.926 3.260 918.75 29.295 69.357 916.20 22.056 4.359 918.75 29.295 69.357 916.30 22.315 6.578 918.85 29.625 72.303 916.30 22.345 7.697 918.90 29.789 73.789 916.40 22.574 8.822 918.95 29.954 75.282 916.55 22.962 12.238 919.00 30,118 76,784 916.55 23.992 13.389 916.05 23.351 15.711 916.75 23.481 16.882 918.80 23.118 76,784 916.80 23.610 18.059 916.85 23.999 21.630 917.00 24.128 22.833 917.00 24.128 22.833 917.10 24.938 30.193 91	(feet)	(s <u>q</u> -ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
916.05 21,667 1.080 918.60 28.802 65.000 916.10 21,797 2.167 918.65 28.966 66.444 916.15 21,926 3.280 918.75 29.296 69.357 916.20 22,056 4.359 918.75 29.296 69.357 916.30 22,315 6.578 918.85 29.625 72.303 916.40 22,574 8.822 918.90 29.789 73.789 916.40 22,574 8.822 918.95 29.954 75.282 916.55 22.962 12.238 919.00 30,118 76,784 916.55 22.962 12.238 916.80 23,610 18.059 916.80 23,610 18.059 916.85 23,740 19.243 916.90 23,869 20.433 917.00 24.128 22.833 917.00 24.128 22.833 917.25 24.603 28.949 917.10 24.938 30.193 91	916.00	21,538	0	918.55	28,637	63,564
918.10 21.797 2.167 918.65 28.966 66.444 916.15 21.926 3.260 918.75 29.296 69.357 916.20 22.056 4.359 918.75 29.296 69.357 916.25 22.186 5.465 918.80 29.400 70.826 916.35 22.445 7.697 918.90 29.789 73.789 916.45 22.704 9.954 918.95 29.954 75.282 916.50 22.833 11.093 30.118 76.784 916.65 23.221 14.547 918.95 29.954 75.282 916.86 23.351 15.711 916.75 23.481 16.822 916.80 23.610 18.059 918.85 29.962 17.33 916.85 23.740 19.243 916.90 23.869 20.433 917.00 24.128 22.833 919.91 917.30 24.938 30.193 917.20 24.668 27.713 917.25 25.613 36.512 917.55 25.613 36.512	916.05	21,667	1,080	918.60	28,802	65,000
916.15 21,926 3,260 918.70 29,131 67,897 916.20 22,056 4,359 918.75 29,296 69,357 916.30 22,315 6,578 918.80 29,460 70,826 916.35 22,445 7,667 918.80 29,789 73,789 916.40 22,574 8,822 918.95 29,954 75,282 916.45 22,062 12,238 919.00 30,118 76,784 916.65 23,292 13,389 916.65 23,221 14,547 916.75 23,481 16,882 916.80 23,610 18,859 916.85 23,740 19,243 916.90 23,869 20,433 917.05 24,683 24,433 917.05 24,668 27,713 917.20 24,668 27,713 917.30 24,938 30,193 917.35 25,073 31,443 917.43 25,248 32,700 917.45 25,343 33,964 917.55 25,613 36,512 917.75 26,153 41,688 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
916.20 22.056 4.359 918.75 29.286 69.357 916.25 22.186 5.465 918.80 29.460 70.826 916.30 22.315 6.578 918.85 29.625 72.303 916.35 22.445 7.697 918.90 29.789 73.789 916.40 22.574 8.822 918.95 29.954 75.282 916.45 22.704 9.954 919.00 30.118 76.784 916.50 22.833 11.093 916.85 23.902 13.389 916.65 23.221 14.547 916.70 23.351 15.711 916.75 23.481 16.862 916.865 23.740 19.243 916.85 23.740 19.243 916.90 23.869 20.433 917.00 24.128 22.833 917.05 24.668 27.713 917.20 24.668 27.713 917.35 25.073 31.443 917.25 24.803 28.949 917.35 25.613 36.512 917.55 25.613 36.512						
916.25 22,186 5,465 918.80 29,460 70.826 916.30 22,315 6,578 918.80 29,625 72,303 916.40 22,574 8,822 918.90 29,789 73,789 916.44 22,704 9,954 918.95 29,954 75,282 916.45 22,704 9,954 919.00 30,118 76,784 916.50 22,833 11,093 919.00 30,118 76,784 916.60 23,092 13,389 916.60 23,092 13,389 916.65 23,221 14,547 916,70 23,481 16,882 916.80 23,610 18,059 916.85 23,740 19,243 916.85 23,740 19,243 917.10 24,398 22,833 917.00 24,128 22,833 917.05 24,668 27,713 917.15 24,533 26,483 917.93 25,073 31,443 917.50 25,613 36,512 917.65 25,613 36,512 917.60 25,748 37,79						
916.30 22,315 6,578 918.85 29,625 72,303 916.35 22,445 7,697 918.90 29,789 73,789 916.40 22,574 8,822 918.95 29,954 75,282 916.45 22,704 9,954 919.00 30,118 76,784 916.55 22,833 11,093 919.00 30,118 76,784 916.65 23,092 13,389 916.65 23,221 14,547 916.65 23,231 15,711 916.75 23,481 16,882 916.80 23,610 18,059 916.85 23,999 21,630 916.81 23,649 20,433 917.00 24,128 22,833 917.00 24,128 22,833 917.30 24,938 30,193 917.10 24,938 30,193 917.35 25,073 31,443 917.20 24,668 27,713 917.65 25,643 33,964 917.30 26,5478 35,235 917.55 25,613 36,512 917.60 25,748 37,235						
916.35 22,445 7,697 918.90 29,789 73,789 916.40 22,574 8,822 918.95 29,954 75,282 916.45 22,704 9,954 919.00 30,118 76,784 916.50 22,833 11,093 30,118 76,784 916.60 23,092 13,389 916.65 23,221 14,547 916.75 23,481 16,882 916.86 23,740 19,243 916.85 23,740 19,243 919.00 30,118 76,784 916.85 23,740 19,243 919.00 30,118 76,784 916.85 23,740 19,243 919.00 30,118 76,784 916.85 23,999 21,630 24,433 917.00 24,128 22,833 917.05 24,263 24,043 919.00 30,118 76,784 917.30 24,938 30,193 917.35 25,073 31,443 917.45 25,478 35,235 917.55 25,613 36,512 917.85 25,648 39,997						
916.40 22,574 8,822 918.95 29,954 75,282 916.45 22,704 9,954 919.00 30,118 76,784 916.50 22,833 11,093 919.00 30,118 76,784 916.65 23,221 14,547 919.00 30,118 76,784 916.65 23,221 14,547 916.70 23,351 15,711 916.70 23,361 18,059 918.85 23,740 19,243 916.85 23,999 21,630 917.00 24,128 22,833 917.00 24,128 22,833 917.05 24,263 24,043 917.10 24,398 25,259 917.15 24,533 26,483 917.20 24,668 27,713 917.35 25,073 31,443 917.30 24,938 30,193 917.35 25,073 31,443 917.50 25,478 35,235 917.55 26,613 46,512 917.85 26,613 40,384 917.90 26,558 45,642 917.75 26,618 42,999 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
916.45 22.704 9.954 919.00 30,118 76,784 916.50 22,833 11,093 919.00 30,118 76,784 916.65 22,962 12,238 919.00 30,118 76,784 916.65 23,092 13,389 916.65 23,221 14,547 916.70 23,351 15,711 916,70 23,3610 18,059 916.85 23,740 19,243 916.90 23,869 20,433 916.95 23,999 21,630 917.00 24,128 22,833 917.00 24,128 22,833 917.10 24,398 25,259 917.15 24,668 27,713 917,20 24,668 27,713 917.20 24,668 27,700 917.45 25,043 33,964 917.50 25,613 36,512 917.66 25,748 37,796 917.60 25,748 37,796 917.85 26,693 46,973 917.80 26,588 42,999 917.85 26,693 46,973 917.81 27,961 51,21 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
916.5022.83311.093916.5522.96212.238916.6023.09213.389916.6523.22114.547916.7023.35115.711916.7523.48116.882916.8023.61018.059916.8523.74019.243916.9023.86920.433916.9124.26324.043917.0024.12822.833917.1024.39825.259917.1524.63326.483917.2524.60328.949917.3024.93830.193917.4525.07331.443917.5025.47837.700917.6525.61336.512917.7026.01840.384917.7525.61336.512917.7625.88339.087917.7526.15341.688917.7026.01840.384917.7526.55845.642917.7926.58445.999917.8526.42344.317917.9026.55845.642917.9526.69346.973918.1027.15751.010918.1027.48653.742918.2027.48653.742918.2027.48653.742918.3027.81556.507918.4528.30960.717						
916.5522.96212.238916.6023.09213.389916.6523.22114.547916.7023.35115.711916.7523.48116.862916.8023.61018.059916.8523.74019.243916.9523.99921.630917.0024.12822.833917.1024.39825.259917.1024.46827.713917.2024.66827.713917.2524.80328.949917.3024.93830.193917.4025.20832.700917.4525.34333.964917.5025.47835.235917.5525.61336.512917.6025.74837.796917.7026.01840.384917.7026.55845.642917.8026.82842.999917.8526.69346.973918.0026.82842.311918.0027.48653.742918.1027.48653.742918.2027.48653.742918.3027.81556.507918.3027.81556.507918.4028.14459.305918.4528.30960.717				010.00	00,110	10,104
916.60 23.092 13.389 916.65 23.221 14.547 916.70 23.351 15.711 916.75 23.481 16.882 916.80 23.610 18.059 916.85 23.740 19.243 916.90 23.869 20.433 917.00 24.128 22.833 917.05 24.263 24.043 917.10 24.333 26.483 917.20 24.668 27.713 917.25 24.803 28.949 917.30 24.938 30.193 917.40 25.208 32.700 917.55 25.613 36.512 917.50 25.478 37.796 917.55 25.613 36.512 917.65 25.883 39.087 917.70 26.018 40.384 917.75 26.153 41.688 917.80 26.288 42.999 917.85 26.423 44.317 917.90 26.558 45.642 917.81 26.92 49.657 <						
916.6523,22114,547916.7023,35115,711916.7523,48116,882916.8023,61018,059916.8523,74019,243916.9023,86920,433916.9523,99921,630917.0024,12822,833917.1024,38825,259917.1524,53326,483917.2024,66827,713917.3024,93830,193917.4525,02832,700917.4525,03336,612917.6025,747835,235917.6525,61336,512917.6525,88339,087917.7526,15341,688917.8026,28842,999917.8526,61346,973917.8026,58842,999917.8526,62346,973918.0026,82848,311918.0026,82848,311918.0127,15751,010918.1527,32152,372918.2027,48653,742918.3027,81556,507918.4028,14459,305918.4028,14459,305918.4528,30960,717						
916.70 $23,351$ $15,711$ 916.80 $23,610$ $18,059$ 916.85 $23,740$ $19,243$ 916.95 $23,899$ $21,630$ 917.00 $24,128$ $22,833$ 917.05 $24,263$ $24,043$ 917.10 $24,398$ $25,259$ 917.15 $24,668$ $27,713$ 917.25 $24,803$ $28,949$ 917.30 $24,938$ $30,193$ 917.35 $25,073$ $31,443$ 917.55 $25,613$ $36,512$ 917.65 $25,883$ $39,087$ 917.75 $26,153$ $41,688$ 917.75 $26,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.70 $26,018$ $40,384$ 917.70 $26,618$ $42,999$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.80 $26,288$ $48,311$ 918.10 $27,157$ $51,010$ 918.15 $27,321$ $52,372$ 918.20 $27,486$ $53,742$ 918.30 $27,815$ $56,507$ 918.40 $28,144$ $59,305$ 918.45 $28,909$ $60,717$						
916.75 $23,481$ 16.822 916.80 $23,610$ $18,059$ 916.85 $23,740$ $19,243$ 916.90 $23,869$ $20,433$ 917.00 $24,128$ $22,833$ 917.05 $24,263$ $24,043$ 917.15 $24,533$ $26,483$ 917.20 $24,668$ $27,713$ 917.25 $24,803$ $28,949$ 917.35 $25,073$ $31,443$ 917.45 $25,343$ $33,964$ 917.55 $25,613$ $36,512$ 917.65 $25,613$ $36,512$ 917.65 $25,613$ $36,512$ 917.65 $25,683$ $39,087$ 917.75 $26,153$ $41,688$ 917.75 $26,618$ $40,384$ 917.75 $26,693$ $46,973$ 917.85 $26,693$ $46,973$ 918.00 $26,228$ $42,999$ 917.85 $26,693$ $46,973$ 918.10 $27,157$ $51,010$ 918.15 $27,321$ $52,372$ 918.20 $27,486$ $53,742$ 918.30 $27,815$ $56,507$ 918.40 $28,144$ $59,305$ 918.40 $28,144$ $59,305$ 918.45 $28,309$ $60,717$						
916.80 23,610 18,059 916.85 23,740 19,243 916.90 23,869 20,433 916.95 23,999 21,630 917.00 24,128 22,833 917.10 24,398 25,259 917.15 24,533 26,483 917.20 24,668 27,713 917.30 24,938 30,193 917.35 25,073 31,443 917.40 25,248 32,700 917.45 25,343 33,964 917.50 25,478 35,235 917.55 25,613 36,512 917.60 25,748 37,796 917.85 26,083 39,087 917.70 26,018 40,384 917.75 26,153 41,688 917.85 26,423 44,317 917.85 26,693 46,973 918.00 26,828 48,311 918.00 26,828 48,311 918.00 26,828 48,311 918.10 27,157 51,010						
916.85 23,740 19,243 916.90 23,869 20,433 916.95 23,999 21,630 917.00 24,128 22,833 917.05 24,263 24,043 917.15 24,533 26,483 917.20 24,668 27,713 917.30 24,938 30,193 917.35 25,073 31,443 917.40 25,208 32,700 917.45 25,343 33,964 917.50 25,478 37,796 917.60 25,748 37,796 917.75 26,153 41,688 917.75 26,153 41,688 917.85 26,423 44,317 917.90 26,558 45,642 917.95 26,693 46,973 918.10 27,157 51,010 918.15 27,321 52,372 918.20 27,486 53,742 918.20 27,486 53,742 918.20 27,486 53,742 918.20 27,815 56,507						
916.90 23,869 20,433 916.95 23,999 21,630 917.00 24,128 22,833 917.05 24,263 24,043 917.10 24,398 25,259 917.15 24,668 27,713 917.20 24,668 27,713 917.30 24,938 30,193 917.30 24,938 30,193 917.45 25,343 33,964 917.50 25,478 35,235 917.65 25,613 36,512 917.60 25,748 37,796 917.70 26,018 40,384 917.75 26,153 41,688 917.80 26,288 42,999 917.85 26,623 44,317 917.90 26,558 45,642 917.91 26,558 45,642 917.92 26,558 45,642 917.93 26,693 46,973 918.00 26,828 48,311 918.00 26,828 48,311 918.20 27,486 53,742			'			
916.95 $23,999$ $21,630$ 917.00 $24,128$ $22,833$ 917.05 $24,263$ $24,043$ 917.10 $24,398$ $25,259$ 917.15 $24,533$ $26,483$ 917.20 $24,668$ $27,713$ 917.30 $24,938$ $30,193$ 917.35 $25,073$ $31,443$ 917.40 $25,208$ $32,700$ 917.45 $25,343$ $33,964$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.85 $26,423$ $44,317$ 917.95 $26,693$ $46,973$ 918.00 $26,588$ $42,999$ 917.85 $26,423$ $44,317$ 917.95 $26,693$ $46,973$ 918.16 $27,321$ $52,372$ 918.20 $27,486$ $53,742$ 918.25 $27,651$ $56,507$ 918.35 $27,980$ $57,902$ 918.45 $28,309$ $60,717$						
917.00 $24,128$ $22,833$ 917.05 $24,263$ $24,043$ 917.10 $24,398$ $25,259$ 917.15 $24,668$ $27,713$ 917.20 $24,668$ $27,713$ 917.25 $24,803$ $28,949$ 917.30 $24,938$ $30,193$ 917.35 $25,073$ $31,443$ 917.40 $25,208$ $32,700$ 917.45 $25,343$ $33,964$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.85 $26,423$ $44,317$ 917.85 $26,693$ $46,973$ 918.00 $26,828$ $42,999$ 917.85 $26,693$ $46,973$ 918.10 $27,486$ $53,742$ 918.25 $27,651$ $55,121$ 918.30 $27,815$ $56,507$ 918.45 $28,309$ $60,717$						
917.05 $24,263$ $24,043$ 917.10 $24,398$ $25,259$ 917.15 $24,668$ $27,713$ 917.25 $24,803$ $28,949$ 917.30 $24,938$ $30,193$ 917.35 $25,073$ $31,443$ 917.45 $25,208$ $32,700$ 917.45 $25,343$ $33,964$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.75 $26,153$ $41,688$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.85 $26,693$ $46,973$ 917.85 $26,693$ $46,973$ 918.00 $26,528$ $48,311$ 918.10 $27,157$ $51,010$ 918.20 $27,486$ $53,742$ 918.20 $27,486$ $53,742$ 918.25 $27,651$ $55,121$ 918.30 $27,815$ $56,507$ 918.45 $28,309$ $60,717$						
917.1024,39825,259917.1524,53326,483917.2024,66827,713917.2524,80328,949917.3024,93830,193917.3525,07331,443917.4025,20832,700917.4525,34333,964917.5025,47835,235917.5525,61336,512917.6025,74837,796917.6525,88339,087917.7026,01840,384917.8526,42344,317917.9026,55845,642917.9526,69346,973918.0026,82848,311918.0526,99249,657918.1527,32152,372918.2027,48653,742918.2527,65155,121918.3027,81556,507918.4528,30960,717						
917.1524,53326,483917.2024,66827,713917.2524,80328,949917.3024,93830,193917.3525,07331,443917.4025,20832,700917.4525,34333,964917.5025,47835,235917.5525,61336,512917.6625,88339,087917.7026,01840,384917.8026,28842,999917.8526,62344,317917.9026,55845,642917.9526,69346,973918.0026,82848,311918.0526,99249,657918.1527,32152,372918.2027,48653,742918.2527,65155,121918.3027,81556,507918.4528,30960,717						
917.20 $24,668$ $27,713$ 917.25 $24,803$ $28,949$ 917.30 $24,938$ $30,193$ 917.35 $25,073$ $31,443$ 917.40 $25,208$ $32,700$ 917.45 $25,343$ $33,964$ 917.50 $25,478$ $35,235$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.75 $26,153$ $41,688$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.05 $26,992$ $49,657$ 918.10 $27,157$ $51,010$ 918.15 $27,321$ $52,372$ 918.20 $27,486$ $53,742$ 918.30 $27,815$ $56,507$ 918.40 $28,144$ $59,305$ 918.45 $28,309$ $60,717$						
917.25 $24,803$ $28,949$ 917.30 $24,938$ $30,193$ 917.35 $25,073$ $31,443$ 917.40 $25,208$ $32,700$ 917.45 $25,343$ $33,964$ 917.50 $25,478$ $35,235$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.80 $26,288$ $42,999$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.00 $26,828$ $48,311$ 918.05 $26,992$ $49,657$ 918.15 $27,321$ $52,372$ 918.20 $27,486$ $53,742$ 918.25 $27,651$ $55,121$ 918.30 $27,815$ $56,507$ 918.40 $28,144$ $59,305$ 918.45 $28,309$ $60,717$						
917.30 $24,938$ $30,193$ 917.35 $25,073$ $31,443$ 917.40 $25,208$ $32,700$ 917.45 $25,343$ $33,964$ 917.50 $25,478$ $35,235$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.85 $26,288$ $42,999$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.00 $26,828$ $48,311$ 918.05 $26,992$ $49,657$ 918.10 $27,157$ $51,010$ 918.25 $27,651$ $55,121$ 918.35 $27,980$ $57,902$ 918.40 $28,144$ $59,305$ 918.45 $28,309$ $60,717$						
917.35 $25,073$ $31,443$ 917.40 $25,208$ $32,700$ 917.45 $25,343$ $33,964$ 917.50 $25,478$ $35,235$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.00 $26,828$ $48,311$ 918.05 $26,992$ $49,657$ 918.10 $27,157$ $51,010$ 918.25 $27,651$ $55,121$ 918.30 $27,815$ $56,507$ 918.40 $27,980$ $57,902$ 918.45 $28,309$ $60,717$						
917.40 $25,208$ $32,700$ 917.45 $25,343$ $33,964$ 917.50 $25,478$ $35,235$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.80 $26,288$ $42,999$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.00 $26,828$ $48,311$ 918.05 $26,992$ $49,657$ 918.10 $27,157$ $51,010$ 918.25 $27,651$ $52,372$ 918.20 $27,486$ $53,742$ 918.35 $27,980$ $57,902$ 918.40 $28,144$ $59,305$ 918.45 $28,309$ $60,717$						
917.45 $25,343$ $33,964$ 917.50 $25,478$ $35,235$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.80 $26,288$ $42,999$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.00 $26,828$ $48,311$ 918.05 $26,992$ $49,657$ 918.10 $27,157$ $51,010$ 918.15 $27,321$ $52,372$ 918.20 $27,486$ $53,742$ 918.30 $27,815$ $56,507$ 918.30 $27,815$ $56,507$ 918.40 $28,144$ $59,305$ 918.45 $28,309$ $60,717$						
917.50 $25,478$ $35,235$ 917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.80 $26,288$ $42,999$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.00 $26,828$ $48,311$ 918.05 $26,992$ $49,657$ 918.10 $27,157$ $51,010$ 918.15 $27,321$ $52,372$ 918.20 $27,486$ $53,742$ 918.35 $27,980$ $57,902$ 918.45 $28,309$ $60,717$						
917.55 $25,613$ $36,512$ 917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.80 $26,288$ $42,999$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.00 $26,828$ $48,311$ 918.05 $26,992$ $49,657$ 918.10 $27,157$ $51,010$ 918.25 $27,651$ $55,121$ 918.30 $27,815$ $56,507$ 918.40 $28,144$ $59,305$ 918.45 $28,309$ $60,717$						
917.60 $25,748$ $37,796$ 917.65 $25,883$ $39,087$ 917.70 $26,018$ $40,384$ 917.75 $26,153$ $41,688$ 917.80 $26,288$ $42,999$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.00 $26,828$ $48,311$ 918.05 $26,992$ $49,657$ 918.10 $27,157$ $51,010$ 918.20 $27,486$ $53,742$ 918.25 $27,651$ $55,121$ 918.30 $27,815$ $56,507$ 918.40 $28,144$ $59,305$ 918.45 $28,309$ $60,717$						
917.6525,88339,087917.7026,01840,384917.7526,15341,688917.8026,28842,999917.8526,42344,317917.9026,55845,642917.9526,69346,973918.0026,82848,311918.0526,99249,657918.1027,15751,010918.2027,48653,742918.2027,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717						
917.7026,01840,384917.7526,15341,688917.8026,28842,999917.8526,42344,317917.9026,55845,642917.9526,69346,973918.0026,82848,311918.0526,99249,657918.1027,15751,010918.2027,48653,742918.2527,65155,121918.3027,81556,507918.4528,30960,717						
917.7526,15341,688917.8026,28842,999917.8526,42344,317917.9026,55845,642917.9526,69346,973918.0026,82848,311918.0526,99249,657918.1027,15751,010918.2027,48653,742918.2527,65155,121918.3027,81556,507918.4528,30960,717						
917.80 $26,288$ $42,999$ 917.85 $26,423$ $44,317$ 917.90 $26,558$ $45,642$ 917.95 $26,693$ $46,973$ 918.00 $26,828$ $48,311$ 918.05 $26,992$ $49,657$ 918.10 $27,157$ $51,010$ 918.15 $27,321$ $52,372$ 918.20 $27,486$ $53,742$ 918.25 $27,651$ $55,121$ 918.30 $27,815$ $56,507$ 918.40 $28,144$ $59,305$ 918.45 $28,309$ $60,717$						
917.8526,42344,317917.9026,55845,642917.9526,69346,973918.0026,82848,311918.0526,99249,657918.1027,15751,010918.1527,32152,372918.2027,48653,742918.2527,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717						
917.9026,55845,642917.9526,69346,973918.0026,82848,311918.0526,99249,657918.1027,15751,010918.1527,32152,372918.2027,48653,742918.2527,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717						
917.9526,69346,973918.0026,82848,311918.0526,99249,657918.1027,15751,010918.1527,32152,372918.2027,48653,742918.2527,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717			44,317			
918.0026,82848,311918.0526,99249,657918.1027,15751,010918.1527,32152,372918.2027,48653,742918.2527,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717						
918.0526,99249,657918.1027,15751,010918.1527,32152,372918.2027,48653,742918.2527,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717						
918.1027,15751,010918.1527,32152,372918.2027,48653,742918.2527,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717						
918.1527,32152,372918.2027,48653,742918.2527,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717						
918.2027,48653,742918.2527,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717						
918.2527,65155,121918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717		,				
918.3027,81556,507918.3527,98057,902918.4028,14459,305918.4528,30960,717						
918.3527,98057,902918.4028,14459,305918.4528,30960,717						
918.40 28,144 59,305 918.45 28,309 60,717						
918.45 28,309 60,717						
918.50 28,473 62,136						
	918.50	28,473	62,136			

20230222 hydrocad Prepared by MFRA HydroCAD® 10.10-4b, s/n 01876, © 2020 Hyd	Proposed <i>MSE 24-hr 3 10-Year Rainfall=4.26"</i> Printed 2/22/2023 roCAD Software Solutions LLC Page 42			
HydroCAD® 10.10-4bs/n 01876© 2020 HydroCAD Software Solutions LLCPage 42Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind methodPage 42				
Subcatchment1S: To site sewer	Runoff Area=79,886 sf 95.12% Impervious Runoff Depth=3.91" Tc=7.0 min CN=97 Runoff=10.83 cfs 0.598 af			
Subcatchment2S: Direct to wetland	Runoff Area=47,288 sf 6.48% Impervious Runoff Depth=2.34" Tc=7.0 min CN=81 Runoff=4.40 cfs 0.212 af			
Subcatchment3S: Runoff to Offsite Flow Length=260'	Runoff Area=25,698 sf 5.00% Impervious Runoff Depth=2.26" Slope=0.0200 '/' Tc=17.8 min CN=80 Runoff=1.58 cfs 0.111 af			
Subcatchment4S: Runoff to Wazata Blvc	Runoff Area=10,922 sf 16.27% Impervious Runoff Depth=2.51" Tc=7.0 min CN=83 Runoff=1.09 cfs 0.053 af			
Subcatchment5S: to 102	Runoff Area=6,651 sf 62.29% Impervious Runoff Depth=3.27" Tc=7.0 min CN=91 Runoff=0.82 cfs 0.042 af			
Reach 3R: total to offsite wetland	Inflow=1.58 cfs 0.111 af Outflow=1.58 cfs 0.111 af			
Reach 4R: total proposed	Inflow=2.19 cfs 0.164 af Outflow=2.19 cfs 0.164 af			
Pond 1P: Underground Detention	Peak Elev=927.49' Storage=9,293 cf Inflow=10.83 cfs 0.598 af Outflow=8.26 cfs 0.598 af			
Pond 102: stmh 102 24.0" Round	Peak Elev=921.49' Inflow=8.80 cfs 0.639 af Culvert n=0.011 L=281.0' S=0.0040 '/' Outflow=8.80 cfs 0.639 af			
Pond Wtld Prd: Existing Wetland	Peak Elev=917.57' Storage=37,069 cf Inflow=11.92 cfs 0.851 af Outflow=0.00 cfs 0.000 af			
Total Runoff Area = 3.91	3 ac Runoff Volume = 1.015 af Average Runoff Depth = 3.11' 49.39% Pervious = 1.933 ac 50.61% Impervious = 1.980 ac			

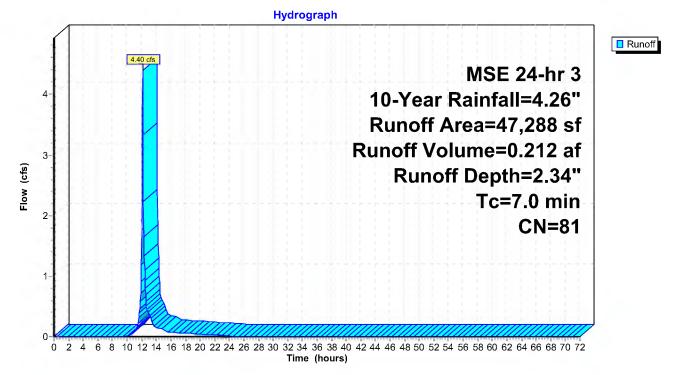

Summary for Subcatchment 1S: To site sewer

Runoff = 10.83 cfs @ 12.14 hrs, Volume= 0.598 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

A	rea (sf)	CN	Description		
	75,991	98	Paved parking, HSG D		
	3,895	80	>75% Grass cover, Good, HSG D		
	79,886	97	Weighted Average		
	3,895		4.88% Pervious Area		
	75,991		95.12% Impervious Area		
Tc (min)	Length (feet)	Slope (ft/ft	-	Capacity (cfs)	Description
7.0		(1011		(013)	Direct Entry,
					, ,

Subcatchment 1S: To site sewer

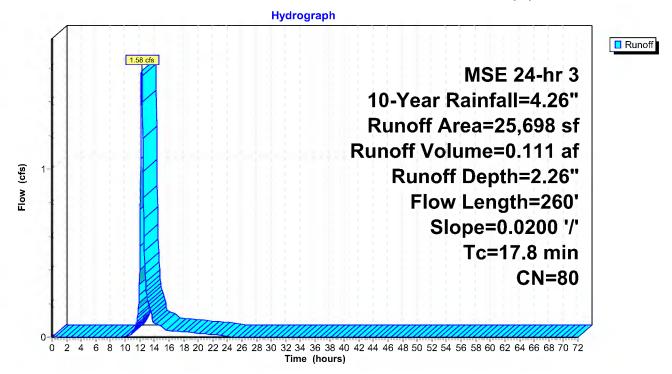

Summary for Subcatchment 2S: Direct to wetland

Runoff = 4.40 cfs @ 12.14 hrs, Volume= 0.212 af, Depth= 2.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

A	rea (sf)	CN	Description			
	3,064	98	Paved parking, HSG D			
	44,224	80	>75% Grass cover, Good, HSG D			
	47,288	81	Weighted Average			
	44,224		93.52% Pervious Area			
	3,064		6.48% Impervious Area			
_				.		
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
7.0					Direct Entry,	
					-	

Subcatchment 2S: Direct to wetland

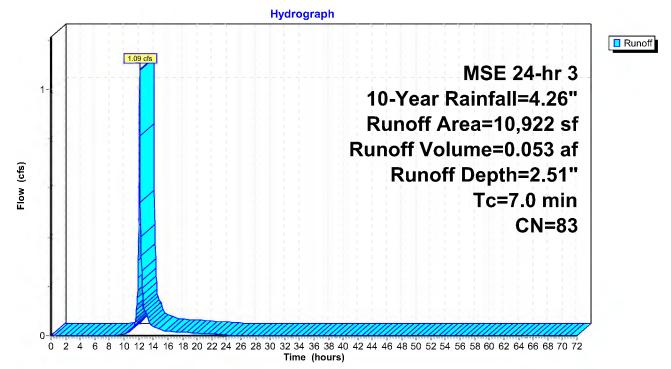

Summary for Subcatchment 3S: Runoff to Offsite Wetland (N)

Runoff = 1.58 cfs @ 12.27 hrs, Volume= 0.111 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

A	rea (sf)	CN E	Description					
	1,286	98 F	98 Paved parking, HSG D					
	24,412	79 V	Voods/gras	ss ⁻ comb., C	Good, HSG D			
	25,698	80 V	Veighted A	verage				
	24,412	9	5.00% Per	vious Area				
	1,286	5	.00% Impe	ervious Area	a			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
15.1	100	0.0200	0.11		Sheet Flow, SWALE			
					Grass: Dense n= 0.240 P2= 2.86"			
2.7	160	0.0200	0.99		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
17.8	260	Total						

Subcatchment 3S: Runoff to Offsite Wetland (N)

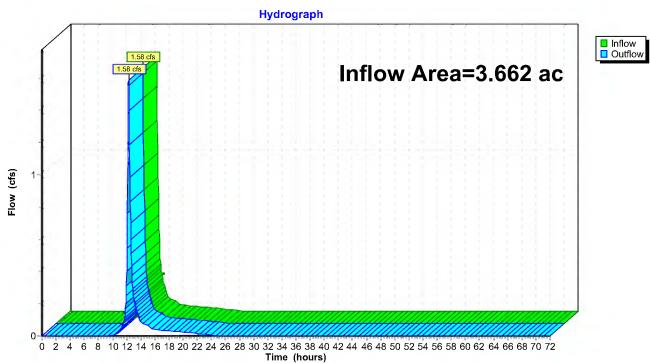

Summary for Subcatchment 4S: Runoff to Wazata Blvd (S)

Runoff = 1.09 cfs @ 12.14 hrs, Volume= 0.053 af, Depth= 2.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=4.26"

A	rea (sf)	CN	Description					
	1,777	98	Paved park	ing, HSG D)			
	9,145	80	>75% Gras	75% Grass cover, Good, HSG D				
	10,922	83	Weighted A	verage				
	9,145		83.73% Pervious Area					
	1,777		16.27% lmp	pervious Ar	ea			
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
7.0					Direct Entry,			

Subcatchment 4S: Runoff to Wazata Blvd (S)

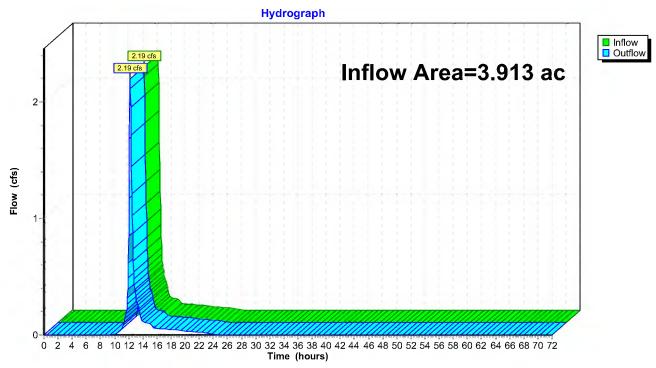

	AD® 10.10-4	4b_s/n_01	1876 © 202	20 HydroCA	D Software S	olutions LLC			Page 4
			Summ	nary for	Subcatchn	nent 5S: to	o 102		
Runoff	=	0.82 cfs	s@ 12.14	4 hrs, Vol	ume=	0.042 af, D	epth= 3.27"		
					hted-CN, Tim	ne Span= 0.0	0-72.00 hrs,	dt= 0.05 ł	nrs
	l-hr 3 10-Y								
ŀ	Area (sf)		escription		<u></u> ר				
	4,143 2,508		aved parki 75% Gras		ood, HSG D				
	6,651	91 V	Veighted A	verage					
	2,508		7.71% Per						
	4,143	D.	2.29% Imp	pervious A	rea				
Тс	•	Slope	Velocity	Capacity	Descriptior	า			
(min) 7.0		(ft/ft)	(ft/sec)	(cfs)	Direct Ent				
7.0					Direct Ent	ry,			
				Subcat	chment 5S	: to 102			
				Hydr	ograph				
0.9									Runoff
0.85		0.82 cfs							
0.8	4						MSE 24	-hr 3	
0.75 0.7	1				1	0-Year R	ainfall=4	.26"	
0.65						Runoff A	Area=6,6	51 sf	
0.6	1						ume=0.04		
0.58 (2) 0.8							Depth=3		
-						Runon	1 A T 1 I	10.00	
			+ - +				Tc=7.0		
0.45 0.4 0.4	1						CN	V=91	
0.35									
0.38 0.3 0.28 0.2									
0.35 0.3 0.25	5-								

Summary for Reach 3R: total to offsite wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.662 ac, 52.96% Impervious, Inflow D	Depth = 0.36" for 10-Year event
Inflow =	1.58 cfs @ 12.27 hrs, Volume=	0.111 af
Outflow =	1.58 cfs @ 12.27 hrs, Volume=	0.111 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach 3R: total to offsite wetland

Summary for Reach 4R: total proposed

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	3.913 ac, 50.61% Impervious, Inflow Depth = 0.50" for 10-Year event	
Inflow	=	2.19 cfs @ 12.19 hrs, Volume= 0.164 af	
Outflow	=	2.19 cfs @ 12.19 hrs, Volume= 0.164 af, Atten= 0%, Lag= 0.0 min	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 4R: total proposed

Summary for Pond 1P: Underground Detention

[58] Hint: Peaked 0.73' above defined flood level

Inflow Area =	1.834 ac, 95.12% Impervious, Inflow Depth = 3.91" for 10-Ye	ar event
Inflow =	10.83 cfs @ 12.14 hrs, Volume= 0.598 af	
Outflow =	8.26 cfs @ 12.22 hrs, Volume= 0.598 af, Atten= 24%, L	.ag= 4.6 min
Primary =	8.26 cfs @ 12.22 hrs, Volume= 0.598 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 927.49'@ 12.22 hrs Surf.Area= 3,774 sf Storage= 9,293 cf Flood Elev= 926.76' Surf.Area= 3,774 sf Storage= 7,920 cf

Plug-Flow detention time= 108.6 min calculated for 0.597 af (100% of inflow) Center-of-Mass det. time= 108.6 min (863.5 - 755.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	922.50'	0 cf	37.00'W x 102.00'L x 6.00'H Field A
			22,644 cf Overall - 9,817 cf Embedded = 12,827 cf x 0.0% Voids
#2A	923.00'	9,817 cf	CMP Round 60 x 25 Inside #1
			Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf
			Overall Size= 60.0"W x 60.0"H x 20.00'L
			25 Chambers in 5 Rows
#3	928.00'	137 cf	riser storage (Prismatic)Listed below (Recalc)
		9,954 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
928.00	65	0	0
930.10	65	137	137

Device	Routing	Invert	Outlet Devices
#1	Primary	920.70'	24.0" Round device outlet L= 108.0' Ke= 0.900
	-		Inlet / Outlet Invert= 920.70' / 920.17' S= 0.0049 '/' Cc= 0.900
			n= 0.011, Flow Area= 3.14 sf
#2	Device 1	923.00'	0.480 cfs 18" phospho, 14 cartridge
#3	Device 2	923.00'	4.0" Vert. device inlet C= 0.600 Limited to weir flow at low heads
#4	Device 1	926.76'	4.0' long device bypass weir 2 End Contraction(s)

Primary OutFlow Max=7.54 cfs @ 12.22 hrs HW=927.44' TW=921.40' (Dynamic Tailwater) **1=device outlet** (Passes 7.54 cfs of 28.61 cfs potential flow)

-2=18" phospho, 14 cartridge (Constant Controls 0.48 cfs)

3=device inlet (Passes 0.48 cfs of 0.87 cfs potential flow)

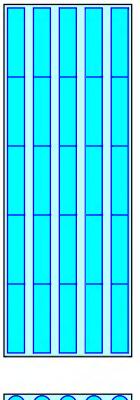
-4=device bypass weir (Weir Controls 7.06 cfs @ 2.69 fps)

Pond 1P: Underground Detention - Chamber Wizard Field A

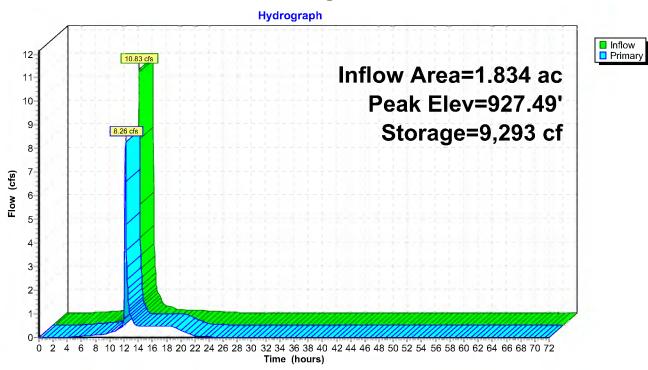
Chamber Model = CMP Round 60 (Round Corrugated Metal Pipe)

Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf Overall Size= 60.0"W x 60.0"H x 20.00'L

60.0" Wide + 30.0" Spacing = 90.0" C-C Row Spacing


5 Chambers/Row x 20.00' Long = 100.00' Row Length +12.0" End Stone x 2 = 102.00' Base Length 5 Rows x 60.0" Wide + 30.0" Spacing x 4 + 12.0" Side Stone x 2 = 37.00' Base Width 6.0" Stone Base + 60.0" Chamber Height + 6.0" Stone Cover = 6.00' Field Height

25 Chambers x 392.7 cf = 9,817.5 cf Chamber Storage


22,644.0 cf Field - 9,817.5 cf Chambers = 12,826.5 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 9,817.5 cf = 0.225 afOverall Storage Efficiency = 43.4%Overall System Size = $102.00' \times 37.00' \times 6.00'$

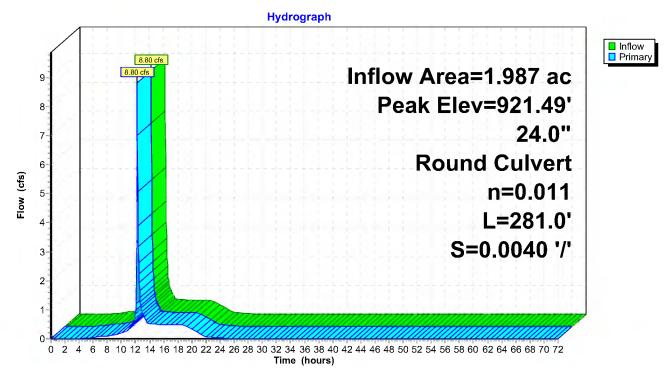
25 Chambers 838.7 cy Field 475.1 cy Stone

Pond 1P: Underground Detention

Stage-Area-Storage for Pond 1P: Underground Detention

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
922.50	0	927.60	9,450
922.60	0	927.70	9,577
922.70	Ő	927.80	9,686
922.80	0	927.90	9,770
922.90	0	928.00	9,817
923.00	0		
	47	928.10	9,824
923.10		928.20	9,830
923.20	132	928.30	9,837
923.30	240	928.40	9,843
923.40	368	928.50	9,850
923.50	511	928.60	9,856
923.60	667	928.70	9,863
923.70	835	928.80	9,869
923.80	1,014	928.90	9,876
923.90	1,202	929.00	9,882
924.00	1,398	929.10	9,889
924.10	1,601	929.20	9,895
924.20	1,812	929.30	9,902
924.30	2,028	929.40	9,908
924.40	2,250	929.50	9,915
924.50	2,477	929.60	9,921
924.60	2,708	929.70	9,928
924.70	2,943	929.80	9,934
924.80	3,182	929.90	9,941
924.90	3,423	930.00	9,947
925.00	3,667	930.10	9,954
925.10	3,913	000.10	0,001
925.20	4,161		
925.30	4,409		
925.40	4,659		
925.50	4,909		
	4,909 5,159		
925.60 925.70			
	5,408		
925.80	5,657		
925.90	5,904		
926.00	6,150		
926.10	6,394		
926.20	6,636		
926.30	6,874		
926.40	7,109		
926.50	7,340		
926.60	7,567		
926.70	7,789		
926.80	8,006		
926.90	8,216		
927.00	8,420		
927.10	8,616		
927.20	8,804		
927.30	8,982		
927.40	9,150		
927.50	9,307		
	6.15		

Summary for Pond 102: stmh 102


[57] Hint: Peaked at 921.49' (Flood elevation advised)

Inflow Area =	1.987 ac, 92.60% Impervious, Inflow	Depth = 3.86" for 10-Year event
Inflow =	8.80 cfs @ 12.21 hrs, Volume=	0.639 af
Outflow =	8.80 cfs @ 12.21 hrs, Volume=	0.639 af, Atten= 0%, Lag= 0.0 min
Primary =	8.80 cfs @ 12.21 hrs, Volume=	0.639 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 921.49'@ 12.21 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	919.93'	24.0" Round Culvert L= 281.0' Ke= 0.900 Inlet / Outlet Invert= 919.93' / 918.80' S= 0.0040 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=8.14 cfs @ 12.21 hrs HW=921.41' TW=916.48' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 8.14 cfs @ 3.27 fps)

Pond 102: stmh 102

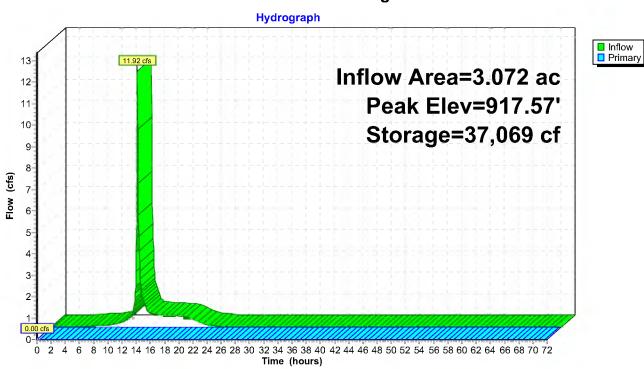
Stage-Area-Storage for Pond 102: stmh 102

Elevation	Storage	Elevation	Storage
Elevation (feet)	Storage (acre-feet)	Elevation (feet)	Storage (acre-feet)
919.93	0.000	(feet) 920.95	0.000
919.95	0.000	920.95	0.000
919.95	0.000	920.97	0.000
919.99	0.000	921.01	0.000
920.01	0.000	921.03	0.000
920.03	0.000	921.05	0.000
920.05	0.000	921.07	0.000
920.07	0.000	921.09	0.000
920.09	0.000	921.11	0.000
920.11	0.000	921.13	0.000
920.13	0.000	921.15	0.000
920.15	0.000	921.17	0.000
920.17	0.000	921.19	0.000
920.19	0.000	921.21	0.000
920.21	0.000	921.23	0.000
920.23	0.000	921.25	0.000
920.25	0.000	921.27	0.000
920.27	0.000	921.29	0.000
920.29	0.000	921.31	0.000
920.31	0.000	921.33	0.000
920.33	0.000	921.35	0.000
920.35	0.000	921.37	0.000
920.37	0.000	921.39	0.000
920.39	0.000	921.41	0.000
920.41	0.000	921.43	0.000
920.43	0.000	921.45	0.000
920.45	0.000	921.47	0.000
920.47	0.000	921.49	0.000
920.49	0.000	921.51	0.000
920.51	0.000	921.53	0.000
920.53	0.000	921.55	0.000
920.55	0.000	921.57	0.000
920.57 920.59	0.000 0.000	921.59 921.61	0.000 0.000
920.59 920.61	0.000	921.61	0.000
920.63	0.000	921.65	0.000
920.65	0.000	921.67	0.000
920.67	0.000	921.69	0.000
920.69	0.000	921.71	0.000
920.71	0.000	921.73	0.000
920.73	0.000	921.75	0.000
920.75	0.000	921.77	0.000
920.77	0.000	921.79	0.000
920.79	0.000	921.81	0.000
920.81	0.000	921.83	0.000
920.83	0.000	921.85	0.000
920.85	0.000	921.87	0.000
920.87	0.000	921.89	0.000
920.89	0.000	921.91	0.000
920.91	0.000	921.93	0.000
920.93	0.000		

Summary for Pond Wtld Prd: Existing Wetland

Inflow Area	=	3.072 ac, 62.17% Impervious, Inflow Depth = 3.32" for 10-Year event	
Inflow =	=	11.92 cfs @ 12.21 hrs, Volume= 0.851 af	
Outflow =	=	0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min	
Primary =	=	0.00 cfs @ 0.00 hrs, Volume= 0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 917.57' @ 37.65 hrs Surf.Area= 25,672 sf Storage= 37,069 cf


Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	t Avail.Sto	rage Storage	e Description		
#1	916.00)' 76,78	34 cf Custor	n Stage Data (Pri	ismatic)Listed below (I	Recalc)
	_			·		
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
916.0	00	21,538	0	0		
917.0	00	24,128	22,833	22,833		
918.0	00	26,828	25,478	48,311		
919.0	00	30,118	28,473	76,784		
Device	Routing	Invert	Outlet Devic	es		
#1	Primary	916.35'	15.0" Roun	d ocs outlet L= 1	8.0' Ke= 0.900	
	-		Inlet / Outlet	Invert= 916.35' / 9)16.22' S= 0.0072 '/'	Cc= 0.900
			n= 0.010, FI	ow Area= 1.23 sf		
#2	Device 1	918.08'	4.0' long oc	s weir wall 2 End	I Contraction(s)	
#3	Device 2	917.07'	15.0" Roun	d ocs inlet L= 12	0' Ke= 0.900	
			Inlet / Outlet	Invert= 917.07' / 9	916.39' S= 0.0567 '/'	Cc= 0.900
			n= 0.010, FI	ow Area= 1.23 sf		

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=916.00' TW=0.00' (Dynamic Tailwater)

-1=ocs outlet (Controls 0.00 cfs)

2=ocs weir wall (Controls 0.00 cfs) 3=ocs inlet (Controls 0.00 cfs)

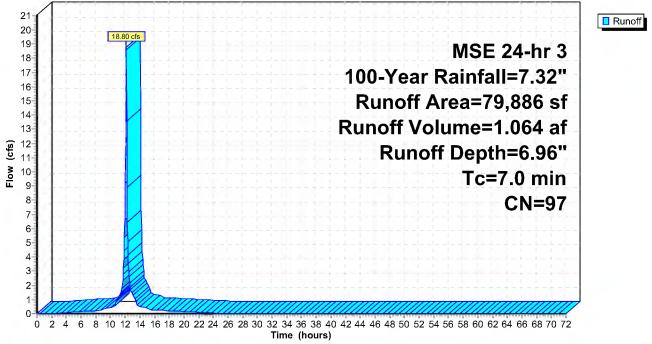
Pond Wtld Prd: Existing Wetland

Stage-Area-Storage for Pond Wtld Prd: Existing Wetland

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
916.00	21,538	Ó	918.55	28,637	63,564
916.05	21,667	1,080	918.60	28,802	65,000
916.10	21,797	2,167	918.65	28,966	66,444
916.15	21,926	3,260	918.70	29,131	67,897
916.20	22,056	4,359	918.75	29,296	69,357
916.25	22,186	5,465	918.80	29,460	70,826
916.30	22,315	6,578	918.85	29,625	72,303
916.35	22,445	7,697	918.90	29,789	73,789
916.40	22,574	8,822	918.95	29,954	75,282
916.45	22,704	9,954	919.00	30,118	76,784
916.50	22,833	11,093			
916.55	22,962	12,238			
916.60	23,092	13,389			
916.65	23,221	14,547			
916.70	23,351	15,711			
916.75	23,481	16,882			
916.80	23,610	18,059			
916.85	23,740	19,243			
916.90	23,869	20,433			
916.95	23,999	21,630			
917.00	24,128	22,833			
917.05	24,263	24,043			
917.10	24,398	25,259			
917.15	24,533	26,483			
917.20	24,668	27,713			
917.25	24,803	28,949			
917.30	24,938	30,193			
917.35	25,073	31,443			
917.40	25,208	32,700			
917.45	25,343	33,964			
917.50	25,478	35,235			
917.55	25,613	36,512			
917.60	25,748	37,796			
917.65	25,883	39,087			
917.70	26,018	40,384			
917.75	26,153	41,688			
917.80	26,288	42,999			
917.85	26,423	44,317			
917.90	26,558	45,642			
917.95	26,693	46,973			
918.00	26,828	48,311			
918.05	26,992	49,657			
918.10	27,157	51,010			
918.15	27,321	52,372			
918.20	27,486	53,742			
918.25	27,651	55,121			
918.30	27,815	56,507			
918.35	27,980	57,902			
918.40	28,144	59,305			
918.45	28,309	60,717			
918.50	28,473	62,136			
	,				

20230222 hydrocad Prepared by MFRA HydroCAD® 10.10-4b s/n 01876 © 2020 Hyd	Proposed MSE 24-hr 3 100-Year Rainfall=7.32" Printed 2/22/2023 roCAD Software Solutions LLC Page 59							
Runoff by SCS T	Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method							
Subcatchment1S: To site sewer	Runoff Area=79,886 sf 95.12% Impervious Runoff Depth=6.96" Tc=7.0 min CN=97 Runoff=18.80 cfs 1.064 af							
Subcatchment2S: Direct to wetland	Runoff Area=47,288 sf 6.48% Impervious Runoff Depth=5.10" Tc=7.0 min CN=81 Runoff=9.31 cfs 0.462 af							
Subcatchment3S: Runoff to Offsite Flow Length=260'	Runoff Area=25,698 sf 5.00% Impervious Runoff Depth=4.99" Slope=0.0200 '/' Tc=17.8 min CN=80 Runoff=3.45 cfs 0.245 af							
Subcatchment4S: Runoff to Wazata Blvd	Runoff Area=10,922 sf 16.27% Impervious Runoff Depth=5.33" Tc=7.0 min CN=83 Runoff=2.22 cfs 0.111 af							
Subcatchment5S: to 102	Runoff Area=6,651 sf 62.29% Impervious Runoff Depth=6.25" Tc=7.0 min CN=91 Runoff=1.50 cfs 0.080 af							
Reach 3R: total to offsite wetland	Inflow=3.45 cfs 0.692 af Outflow=3.45 cfs 0.692 af							
Reach 4R: total proposed	Inflow=4.74 cfs 0.803 af Outflow=4.74 cfs 0.803 af							
Pond 1P: Underground Detention	Peak Elev=928.10' Storage=9,824 cf Inflow=18.80 cfs 1.064 af Outflow=19.45 cfs 1.064 af							
Pond 102: stmh 102 24.0" Round C	Peak Elev=924.00' Inflow=20.95 cfs 1.143 af Culvert n=0.011 L=281.0' S=0.0040 '/' Outflow=20.95 cfs 1.143 af							
Pond Wtld Prd: Existing Wetland	Peak Elev=918.21' Storage=53,987 cf Inflow=30.24 cfs 1.605 af Outflow=0.60 cfs 0.446 af							
Total Runoff Area = 3.913	3 ac Runoff Volume = 1.962 af Average Runoff Depth = 6.02" 49.39% Pervious = 1.933 ac 50.61% Impervious = 1.980 ac							

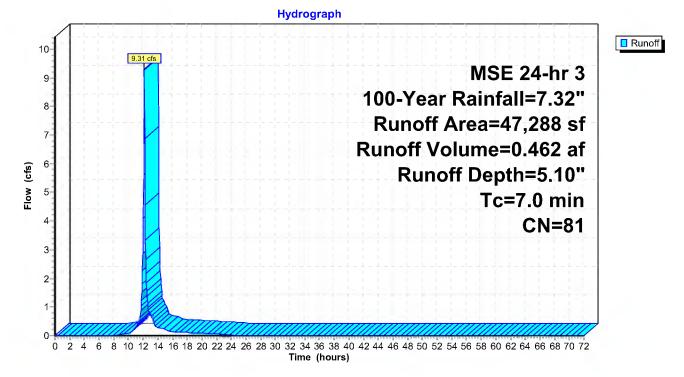
Summary for Subcatchment 1S: To site sewer


Runoff = 18.80 cfs @ 12.14 hrs, Volume= 1.064 af, Depth= 6.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

_	A	rea (sf)	CN	Description		
		75,991	98	Paved park	ing, HSG E	D
_		3,895	80	>75% Gras	s cover, Go	ood, HSG D
		79,886 3,895 75,991		Weighted A 4.88% Perv 95.12% Imp	ious Area	
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	7.0					Direct Entry,

Subcatchment 1S: To site sewer

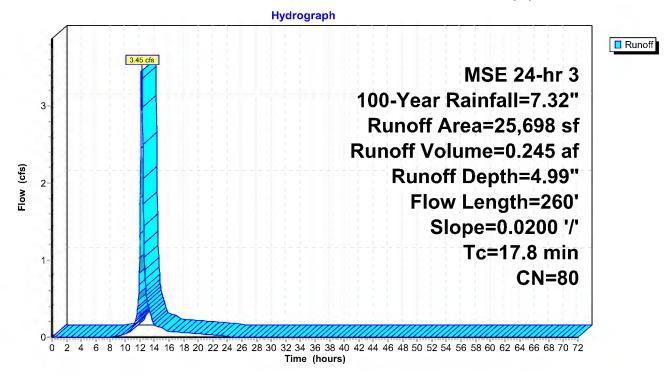

Summary for Subcatchment 2S: Direct to wetland

Runoff = 9.31 cfs @ 12.14 hrs, Volume= 0.462 af, Depth= 5.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

A	rea (sf)	CN	Description		
	3,064	98	Paved park	ing, HSG D	D
	44,224	80	>75% Gras	s cover, Go	ood, HSG D
	47,288	81	Weighted A	verage	
	44,224		93.52% Pe	vious Area	3
	3,064		6.48% Impe	ervious Are	a
Та	Longth	Class	Volocity	Conseit	Description
Tc	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft	(ft/sec)	(cfs)	
7.0					Direct Entry,

Subcatchment 2S: Direct to wetland

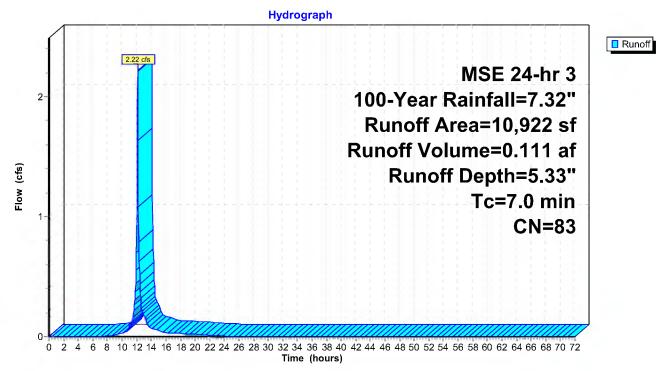

Summary for Subcatchment 3S: Runoff to Offsite Wetland (N)

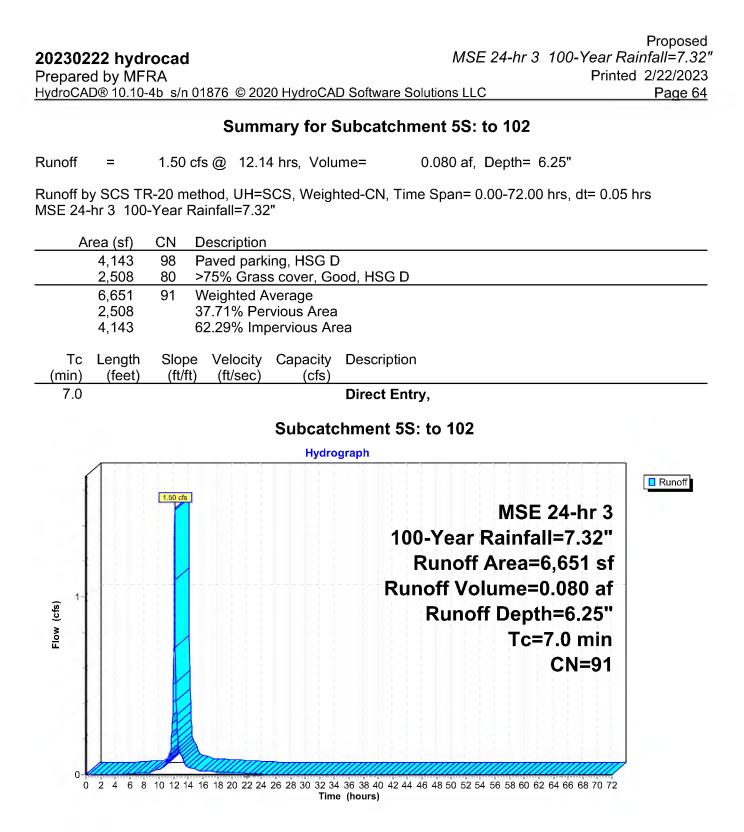
Runoff = 3.45 cfs @ 12.26 hrs, Volume= 0.245 af, Depth= 4.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

	Α	rea (sf)	CN [Description				
		1,286	98 F	98 Paved parking, HSG D				
		24,412	79 \	79 Woods/grass comb., Good, HSG D				
		25,698	80 \	Veighted A	verage			
		24,412	ę	5.00% Pei	rvious [¯] Area			
		1,286	5	5.00% Impe	ervious Area	а		
(n	Tc nin)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
1	5.1	100	0.0200	0.11		Sheet Flow, SWALE		
	2.7	160	0.0200	0.99		Grass: Dense n= 0.240 P2= 2.86" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		
1	7.8	260	Total					

Subcatchment 3S: Runoff to Offsite Wetland (N)

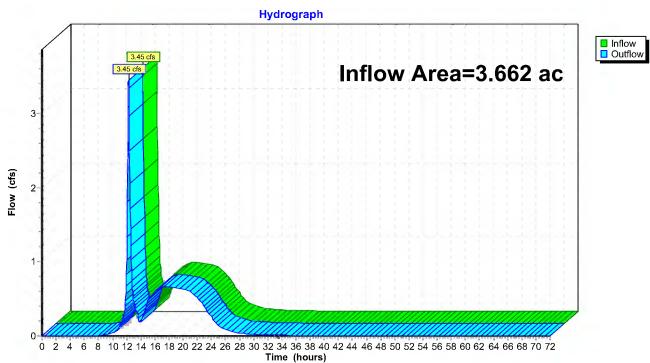

Summary for Subcatchment 4S: Runoff to Wazata Blvd (S)


Runoff = 2.22 cfs @ 12.14 hrs, Volume= 0.111 af, Depth= 5.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=7.32"

A	rea (sf)	CN	Description		
	1,777	98	Paved park	ing, HSG D)
	9,145	80	>75% Gras	s cover, Go	bod, HSG D
	10,922	83	Weighted A	verage	
	9,145		83.73% Pei	vious Area	l
	1,777		16.27% lmp	pervious Ar	ea
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
7.0					Direct Entry,

Subcatchment 4S: Runoff to Wazata Blvd (S)

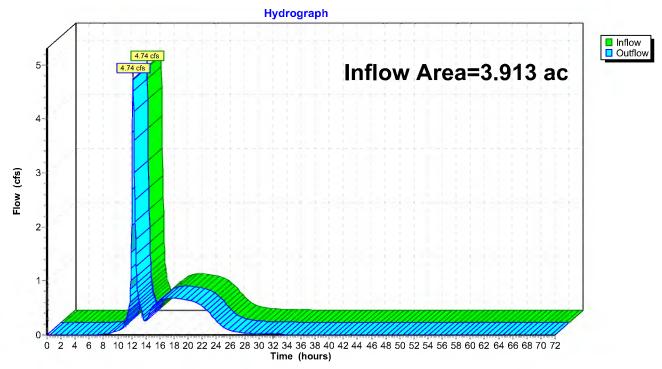


Summary for Reach 3R: total to offsite wetland

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.662 ac, 52.96% Impervious,	Inflow Depth = 2.27"	for 100-Year event
Inflow =	3.45 cfs @ 12.26 hrs, Volume	= 0.692 af	
Outflow =	3.45 cfs @ 12.26 hrs, Volume	= 0.692 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs


Reach 3R: total to offsite wetland

Summary for Reach 4R: total proposed

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	. =	3.913 ac, 50.61% Imp	pervious, Inflow D	epth = 2.46"	for 100-Year event
Inflow	=	4.74 cfs @ 12.19 hrs	, Volume=	0.803 af	
Outflow	=	4.74 cfs @ 12.19 hrs	, Volume=	0.803 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach 4R: total proposed

Summary for Pond 1P: Underground Detention

[58] Hint: Peaked 1.34' above defined flood level [90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area =	1.834 ac, s	95.12% Impervious, In	flow Depth = 6.96"	for 100-Year event
Inflow =	18.80 cfs @	12.14 hrs, Volume=	1.064 af	
Outflow =	19.45 cfs @	12.15 hrs, Volume=	1.064 af, Atte	en= 0%, Lag= 0.5 min
Primary =	19.45 cfs @	12.15 hrs, Volume=	1.064 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 928.10' @ 12.15 hrs Surf.Area= 3,839 sf Storage= 9,824 cf Flood Elev= 926.76' Surf.Area= 3,774 sf Storage= 7,920 cf

Plug-Flow detention time= 84.7 min calculated for 1.063 af (100% of inflow) Center-of-Mass det. time= 84.7 min (831.3 - 746.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	922.50'	0 cf	37.00'W x 102.00'L x 6.00'H Field A
			22,644 cf Overall - 9,817 cf Embedded = 12,827 cf x 0.0% Voids
#2A	923.00'	9,817 cf	CMP Round 60 x 25 Inside #1
			Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf
			Overall Size= 60.0"W x 60.0"H x 20.00'L
			25 Chambers in 5 Rows
#3	928.00'	137 cf	riser storage (Prismatic)Listed below (Recalc)
		9,954 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
928.00	65	0	0
930.10	65	137	137

Device	Routing	Invert	Outlet Devices
#1	Primary	920.70'	24.0" Round device outlet L= 108.0' Ke= 0.900
			Inlet / Outlet Invert= 920.70' / 920.17' S= 0.0049 '/' Cc= 0.900
			n= 0.011, Flow Area= 3.14 sf
#2	Device 1	923.00'	0.480 cfs 18" phospho, 14 cartridge
#3	Device 2	923.00'	4.0" Vert. device inlet C= 0.600 Limited to weir flow at low heads
#4	Device 1	926.76'	4.0' long device bypass weir 2 End Contraction(s)

Primary OutFlow Max=19.16 cfs @ 12.15 hrs HW=928.09' TW=923.93' (Dynamic Tailwater)

-1=device outlet (Passes 19.16 cfs of 24.36 cfs potential flow)

-2=18" phospho, 14 cartridge (Constant Controls 0.48 cfs) -3=device inlet (Passes 0.48 cfs of 0.86 cfs potential flow)

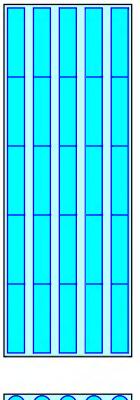
-4=device bypass weir (Weir Controls 18.68 cfs @ 3.77 fps)

Pond 1P: Underground Detention - Chamber Wizard Field A

Chamber Model = CMP Round 60 (Round Corrugated Metal Pipe)

Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf Overall Size= 60.0"W x 60.0"H x 20.00'L

60.0" Wide + 30.0" Spacing = 90.0" C-C Row Spacing


5 Chambers/Row x 20.00' Long = 100.00' Row Length +12.0" End Stone x 2 = 102.00' Base Length 5 Rows x 60.0" Wide + 30.0" Spacing x 4 + 12.0" Side Stone x 2 = 37.00' Base Width 6.0" Stone Base + 60.0" Chamber Height + 6.0" Stone Cover = 6.00' Field Height

25 Chambers x 392.7 cf = 9,817.5 cf Chamber Storage

22,644.0 cf Field - 9,817.5 cf Chambers = 12,826.5 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 9,817.5 cf = 0.225 afOverall Storage Efficiency = 43.4%Overall System Size = $102.00' \times 37.00' \times 6.00'$

25 Chambers 838.7 cy Field 475.1 cy Stone

Proposed MSE 24-hr 3 100-Year Rainfall=7.32" Printed 2/22/2023 ns LLC Page 69

Hydrograph Inflow
 Primary 21 19.45 cfs cfs Inflow Area=1.834 ac 20 19 Peak Elev=928.10' 18 17 16 Storage=9,824 cf 15 14 13 12 11 10 9 Flow (cfs) 8-7 6 5 4 3 2 1 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

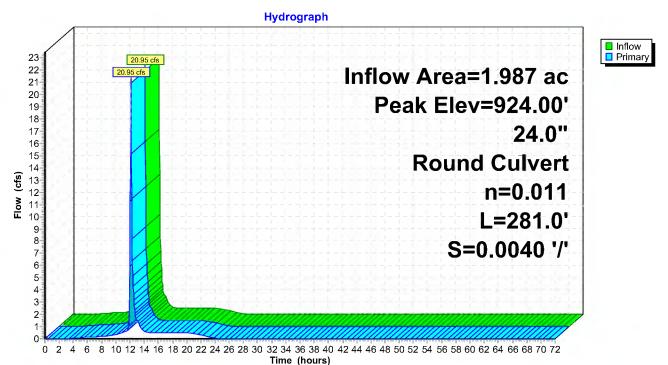
Pond 1P: Underground Detention

Proposed

Stage-Area-Storage for Pond 1P: Underground Detention

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
922.50	0	927.60	9,450
922.60	0	927.70	9,577
922.70	0	927.80	9,686
922.80	Ő	927.90	9,770
922.90	0	928.00	9,817
923.00	0	928.10	9,824
923.10	47	928.20	9,830
923.20	132	928.30	9,837
923.20 923.30	240		9,843
		928.40	
923.40	368	928.50	9,850
923.50	511	928.60	9,856
923.60	667	928.70	9,863
923.70	835	928.80	9,869
923.80	1,014	928.90	9,876
923.90	1,202	929.00	9,882
924.00	1,398	929.10	9,889
924.10	1,601	929.20	9,895
924.20	1,812	929.30	9,902
924.30	2,028	929.40	9,908
924.40	2,250	929.50	9,915
924.50	2,477	929.60	9,921
924.60	2,708	929.70	9,928
924.70	2,943	929.80	9,934
924.80	3,182	929.90	9,941
924.90	3,423	930.00	9,947
925.00	3,667	930.10	9,954
925.10	3,913		
925.20	4,161		
925.30	4,409		
925.40	4,659		
925.50	4,909		
925.60	5,159		
925.70	5,408		
925.80	5,657		
925.90	5,904		
926.00	6,150		
926.10	6,394		
926.20	6,636		
926.30	6,874		
926.40	7,109		
926.50	7,340		
926.60	7,567		
926.70	7,789		
926.80	8,006		
926.90	8,216		
920.90 927.00	8,420		
927.00 927.10	8,616		
927.10	8,804		
927.20 927.30	8,982		
927.30 927.40	9,150		
927.40 927.50	9,307		
321.00	3,307		

Summary for Pond 102: stmh 102


[57] Hint: Peaked at 924.00' (Flood elevation advised)

Inflow Area =	1.987 ac, 92.60% Impervious, Inflow	Depth = 6.91" for 100-Year event
Inflow =	20.95 cfs @ 12.15 hrs, Volume=	1.143 af
Outflow =	20.95 cfs @12.15 hrs, Volume=	1.143 af, Atten= 0%, Lag= 0.0 min
Primary =	20.95 cfs @ 12.15 hrs, Volume=	1.143 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 924.00'@ 12.15 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	919.93'	24.0" Round Culvert L= 281.0' Ke= 0.900 Inlet / Outlet Invert= 919.93' / 918.80' S= 0.0040 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=20.64 cfs @ 12.15 hrs HW=923.92' TW=917.02' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 20.64 cfs @ 6.57 fps)

Pond 102: stmh 102

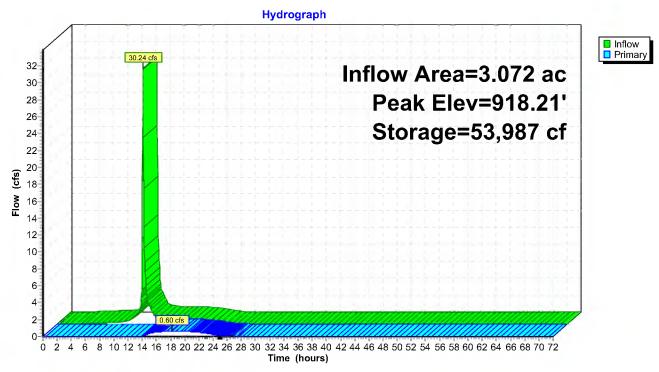
Stage-Area-Storage for Pond 102: stmh 102

	01		01
Elevation (feet)	Storage	Elevation (feet)	Storage (acre-feet)
(feet) 919.93	(acre-feet) 0.000	(feet) 922.48	0.000
919.93	0.000	922.53	0.000
920.03	0.000	922.58	0.000
920.08	0.000	922.63	0.000
920.13	0.000	922.68	0.000
920.18	0.000	922.73	0.000
920.23	0.000	922.78	0.000
920.28	0.000	922.83	0.000
920.33	0.000	922.88	0.000
920.38	0.000	922.93	0.000
920.43	0.000	922.98	0.000
920.48	0.000	923.03	0.000
920.53	0.000	923.08	0.000
920.58	0.000	923.13	0.000
920.63	0.000	923.18	0.000
920.68 920.73	0.000 0.000	923.23 923.28	0.000 0.000
920.73 920.78	0.000	923.20	0.000
920.83	0.000	923.38	0.000
920.88	0.000	923.43	0.000
920.93	0.000	923.48	0.000
920.98	0.000	923.53	0.000
921.03	0.000	923.58	0.000
921.08	0.000	923.63	0.000
921.13	0.000	923.68	0.000
921.18	0.000	923.73	0.000
921.23	0.000	923.78	0.000
921.28	0.000	923.83	0.000
921.33	0.000	923.88	0.000
921.38	0.000	923.93	0.000
921.43 921.48	0.000 0.000	923.98	0.000
921.53	0.000		
921.58	0.000		
921.63	0.000		
921.68	0.000		
921.73	0.000		
921.78	0.000		
921.83	0.000		
921.88	0.000		
921.93	0.000		
921.98	0.000		
922.03	0.000		
922.08 922.13	0.000 0.000		
922.13 922.18	0.000		
922.10	0.000		
922.28	0.000		
922.33	0.000		
922.38	0.000		
922.43	0.000		
		l	

Summary for Pond Wtld Prd: Existing Wetland

Inflow Area	a =	3.072 ac, 62.17% Impervious, Inflow Depth = 6.27" for 100-Year event
Inflow	=	30.24 cfs @ 12.15 hrs, Volume= 1.605 af
Outflow	=	0.60 cfs @ 18.21 hrs, Volume= 0.446 af, Atten= 98%, Lag= 364.0 min
Primary	=	0.60 cfs @ 18.21 hrs, Volume= 0.446 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 918.21'@ 18.21 hrs Surf.Area= 27,515 sf Storage= 53,987 cf


Plug-Flow detention time= 549.0 min calculated for 0.446 af (28% of inflow) Center-of-Mass det. time= 383.9 min (1,199.5 - 815.6)

Volume	Inver	t Avail.Sto	rage Storage	Description		
#1	916.00)' 76,78	34 cf Custon	n Stage Data (Pri	ismatic)Listed below (Recalc)	
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
916.0	00	21,538	0	0		
917.0	00	24,128	22,833	22,833		
918.0	00	26,828	25,478	48,311		
919.0	00	30,118	28,473	76,784		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	916.35'	15.0" Round	d ocs outlet L= 1	18.0' Ke= 0.900	
			Inlet / Outlet	Invert= 916.35' / 9	916.22' S= 0.0072 '/' Cc= 0.900	
			n= 0.010, Fle	ow Area= 1.23 sf		
#2	Device 1	918.08'	4.0' long ocs	s weir wall 2 End	d Contraction(s)	
#3	Device 2	917.07'	15.0" Round	d ocs inlet L= 12	2.0' Ke= 0.900	
			Inlet / Outlet	Invert= 917.07' / 9	916.39' S= 0.0567 '/' Cc= 0.900	
			n= 0.010, Fle	ow Area= 1.23 sf		

Primary OutFlow Max=0.60 cfs @ 18.21 hrs HW=918.21' TW=0.00' (Dynamic Tailwater)

-**1=ocs outlet** (Passes 0.60 cfs of 5.18 cfs potential flow)

2=ocs weir wall (Weir Controls 0.60 cfs @ 1.17 fps) -3=ocs inlet (Passes 0.60 cfs of 1.60 cfs potential flow)

Pond Wtld Prd: Existing Wetland

Stage-Area-Storage for Pond Wtld Prd: Existing Wetland

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
916.00	21,538	0	918.55	28,637	63,564
916.05	21,667	1,080	918.60	28,802	65,000
916.10	21,797	2,167	918.65	28,966	66,444
916.15	21,926	3,260	918.70	29,131	67,897
916.20	22,056	4,359	918.75	29,296	69,357
916.25	22,186	5,465	918.80	29,460	70,826
916.30	22,315	6,578	918.85	29,625	72,303
916.35	22,445	7,697	918.90	29,789	73,789
916.40	22,574	8,822	918.95	29,954	75,282
916.45	22,704	9,954	919.00	30,118	76,784
916.50	22,833	11,093			
916.55	22,962	12,238			
916.60	23,092	13,389			
916.65	23,221	14,547			
916.70	23,351	15,711			
916.75	23,481	16,882			
916.80	23,610	18,059			
916.85	23,740	19,243			
916.90	23,869	20,433			
916.95	23,999	21,630			
917.00	24,128	22,833			
917.05	24,263	24,043			
917.10	24,398	25,259			
917.15	24,533	26,483			
917.20	24,668	27,713			
917.25	24,803	28,949			
917.30	24,938	30,193			
917.35	25,073	31,443			
917.40	25,208	32,700			
917.45	25,343	33,964			
917.50	25,478	35,235			
917.55	25,613	36,512			
917.60	25,748	37,796			
917.65	25,883	39,087			
917.70	26,018	40,384			
917.75	26,153	41,688			
917.80	26,288	42,999			
917.85	26,423	44,317			
917.90	26,558	45,642			
917.95	26,693	46,973			
918.00	26,828	48,311			
918.05	26,992	49,657			
918.10	27,157	51,010			
918.15	27,321	52,372			
918.20	27,486	53,742			
918.25	27,651	55,121			
918.30	27,815	56,507			
918.35	27,980	57,902			
918.40	28,144	59,305			
918.45	28,309	60,717			
918.50	28,473	62,136			
	-,				

APPENDIX C – MIDS MODEL

Project Information

Calculator Version:	Version 4: July 2020
Project Name:	Marsh Run II
User Name / Company Name:	Sambatek
Date:	2/20/2023
Project Description:	
Construction Permit?:	No

Site Information

Retention Requirement (inches):	1.1
Site's Zip Code:	55305
Annual Rainfall (inches):	30.4
Phosphorus EMC (mg/l):	0.3
TSS EMC (mg/l):	54.5

Total Site Area

Land Cover	A Soils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land					0
Managed Turf - disturbed, graded for yards or other turf to be mowed/managed				1.93	1.93
		li	mpervious A	rea (acres)	1.98
			Total A	vrea (acres)	3.91

Site Areas Routed to BMPs

Land Cover	A Soils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land					0
Managed Turf - disturbed, graded for yards or other turf to be mowed/managed				1.73	1.73
		h	mpervious A	rea (acres)	1.94
			Total A	vrea (acres)	3.67

Summary Information

Performance Goal Requirement

Performance goal volume retention requirement: Volume removed by BMPs towards performance goal: Percent volume removed towards performance goal	7906 210 3	ft3 ft ³ %
Annual Volume and Pollutant Load Reductions		
Post development annual runoff volume	5.3888	acre-ft
Annual runoff volume removed by BMPs:	0.0971	acre-ft
Percent annual runoff volume removed:	2	%
Post development annual particulate P load:	2.4185	lbs
Annual particulate P removed by BMPs:	1.851	lbs
Post development annual dissolved P load:	1.979	lbs
Annual dissolved P removed by BMPs:	0.929	lbs
Total P removed by BMPs	2.78	lbs
Percent annual total phosphorus removed:	63	%
Post development annual TSS load:	798.8	lbs
Annual TSS removed by BMPs:	716.2	lbs
Percent annual TSS removed:	90	%

BMP Summary

Performance Goal Summary

BMP Name	BMP Volume Capacity (ft3)	Volume Recieved (ft3)	Volume Retained (ft3)	Volume Outflow (ft3)	Percent Retained (%)
Impervious disconnection	210	399	210	189	53
existing wetland	0	7536	0	7536	0
stormfilter + detention	0	6948	0	6948	0
jelllyfish	0	399	0	399	0
sump	0	6948	0	6948	0

Annual Volume Summary

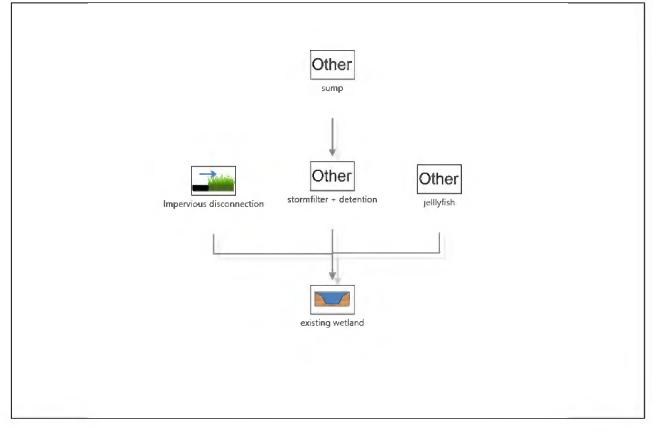
BMP Name	Volume From Direct Watershed (acre-ft)	Volume From Upstream BMPs (acre-ft)	Volume Retained (acre-ft)	Volume outflow (acre-ft)	Percent Retained (%)
Impervious disconnection	1.1172	0	0.0971	1.0201	9
existing wetland	0	5.0911	0	5.0911	0
stormfilter + detention	0	3.8201	0	3.8201	0
jelllyfish	0.2508	0	0	0.2508	0
sump	3.8201	0	0	3.8201	0

Particulate Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (lbs)	Outflow Load (lbs)	Percent Retained (%)
Impervious disconnection	0.5014	0	0.0436	0.4578	9
existing wetland	0	1.1931	0.7159	0.4772	60
stormfilter + detention	0	1.7145	1.0287	0.6858	60
jelllyfish	0.1126	0	0.0631	0.0495	56
sump	1.7145	0	0	1.7145	0

Dissolved Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (lbs)	Outflow Load (lbs)	Percent Retained (%)
Impervious disconnection	0.4102	0	0.0356	0.3746	9
existing wetland	0	0.9762	0	0.9762	0
stormfilter + detention	0	1.4028	0.8417	0.5611	60
jelllyfish	0.0921	0	0.0516	0.0405	56
sump	1.4028	0	0	1.4028	0

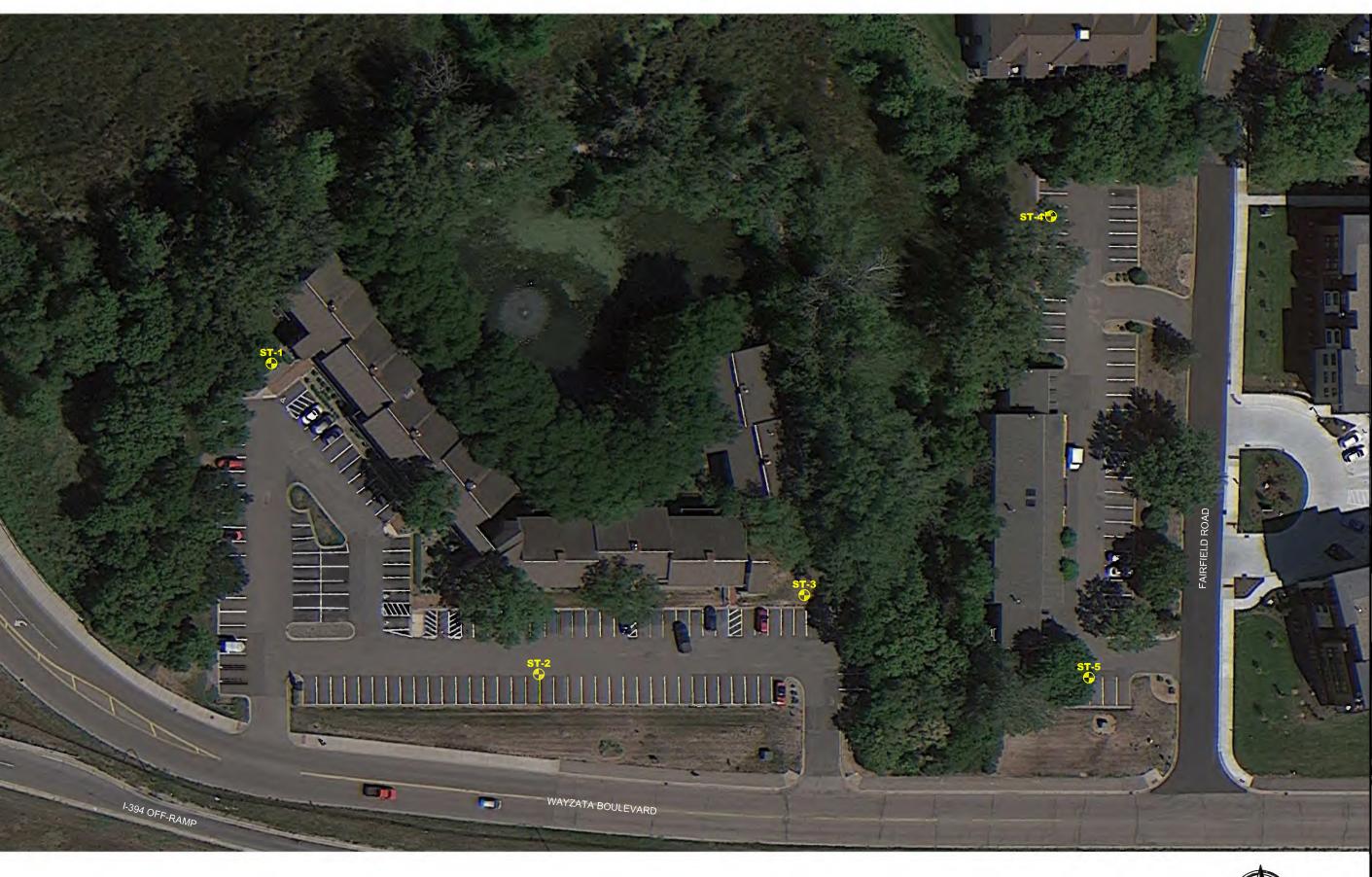

Total Phosphorus Summary

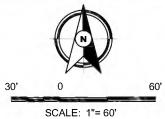
BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (lbs)	Outflow Load (lbs)	Percent Retained (%)
Impervious disconnection	0.9116	0	0.0792	0.8324	9
existing wetland	0	2.1693	0.7159	1.4534	30
stormfilter + detention	0	3.1173	1.8704	1.2469	60
jelllyfish	0.2047	0	0.1147	0.09	56
sump	3.1173	0	0	3.1173	0

TSS Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (lbs)	Outflow Load (lbs)	Percent Retained (%)
Impervious disconnection	165.61	0	117.22	48.39	71
existing wetland	0	132.28	79.37	52.909999999	60
stormfilter + detention	0	509.67	433.22	76.4499999999	85
jelllyfish	37.18	0	29.74	7.44	80
sump	566.3	0	56.63	509.67	10

BMP Schematic




APPENDIX D – BORING LOGS

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information

 Project No

 B1803638 01

 Drawing No:

 B1803638-01

 Drawn By:
 JAG

 Date Drawn:
 10/12/22

Checked By: JLW Last Modified: 10/20/22 Project Information

Marsh Run - Phase II

Northwest Quadrant of Wayzata Boulevard and Fairfield Road W.

Minnetonka, Minnesota

Soil Boring Location Sketch

roject Number B1803638.01		BORING:			for explanation of ST-1	
Seotechnical Evaluation		LOCATION: Se	ee attach	ned skete	ch	
Iarsh Run - Phase II IW Quadrant of Wayzata Blvd ar	d Fairfield Rd W	DATUM: NAC	0 1983 H	IARN Ad	j MN Hennepin (L	JS Feet)
linnetonka, Minnesota		NORTHING:	166	6000	EASTING:	487892
RILLER: M. Takada LOGGED I	BY: R. Huber	START DATE:	1	0/19/22	END DATE:	10/19/22
SURFACE 924.9 ft RIG: 7507	METHOD: 3 1/4" HSA	SURFACING:		Grass	WEATHER:	Sur
Elev./ Depth fr and ft Elev./ Text and ft Elev./ Depth fr and ft Elev./ Text and ft Elev./ Depth fr and ft Elev./ Elev./ Depth fr and ft Elev./ Text and ft Elev./ Soil-ASTM D2488 or 24 1110-1-2	87; Rock-USACE EM	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or R	emarks
922.9 2.0 917.9 7.0 FILL: SILTY SAND (SM), moist FILL: SANDY LEAN CLA black and brown, moist	Y (CL), trace Gravel, - 5-	3-3-5 (8) 17" 3-3-3 (6) 18" 1-2-3				
915.9 9.0 SANDY LEAN CLAY (CL grayish brown, moist, me), trace Gravel, gray to	(5) 17" 2-3-6 (9)		19		
(GLACIAL TILL)	15-	18" 4-6-9 (15) 17" 6-7-11 (18) 18"			Switched to mu drilling at 15 fee	
	20-	5-8-11 (19) 15"				
	25 -	6-11-15 (26) 17"				
896.9 28.0 CLAYEY SAND (SC), tra- brown, moist, very stiff (G		5-8-10 (18*)			*Low recovery	
Continued or	next page Braun Intertec Corpo		t Date:11			

	Number B180				BORING:		4	ST-1			
	nnical Evalua Run - Phase II				LOCATION: S	See attac	hed sket	ch			
		zata Blvd and	Fairfield Rd	w	DATUM: NAD 1983 HARN Adj MN Hennepin (US						
	onka, Minneso				NORTHING:	16	6000	EASTING:	487892		
RILLER:	M. Takada	LOGGED BY:	R. Hu	ber	START DATE	: 1	0/19/22	END DATE:	10/19/2		
SURFACE ELEVATION:	924.9 ft RI	G: 7507	METHOD: 3 1/4"	HSA	SURFACING		Grass	WEATHER:	Su		
Elev./ Depth ft	Soil-AS (Soil-AS	Description of M STM D2488 or 2487 1110-1-290	Rock-USACE EN		Blows (N-Value) Recovery	q _p tsf	MC %	Tests or F	Remarks		
-		Y SAND (SC), trace moist, very stiff (GL/		35-	5-11-12 (23) 18"						
- - - - 880.9				40-	10-10-17 (27) 18"						
44.0	medium	CLAYEY SAND (SC- I-grained, trace Grav nedium dense to der	el, reddish brown	, 45 – L) 45 –	11-12-15 (27) 18"						
- - -		X		50-	12-15-20 (35) 18"						
870.9 54.0 - - -	trace G	GAND (SM), fine to n ravel, gray, moist, m AL TILL)		55 -	15-15-15 (30*)			*Low recovery			
865.9 59.0 - - -	fine to n	Y GRADED SAND with the second	ce Gravel, gray, we	et, 60—V	9-8-8 (16) 18"						
		Continued on n	ext page	-							

Proiect	Nu	nber F	31803638	3.01			BORING:	. Shi in OK	.97 011001	for explanation o ST-1	
			aluation				LOCATION:	See attac	hed sket		
Marsh	Run	- Pha	se II								
				Blvd and	Fairfield F	ld W	DATUM: N	AD 1983 I	HARN Ad	lj MN Hennepin (l	JS Feet)
Minnet	onka	a, Minı	nesota				NORTHING	16	6000	EASTING:	487892
DRILLER:		M. Ta	kada	LOGGED BY:	R.	Huber	START DAT	E:	10/19/22	END DATE:	10/19/22
SURFACE ELEVATION:		924.9 ft	RIG: 75	07	METHOD: 3	/4" HSA	SURFACINO	S:	Grass	WEATHER:	Sun
Elev./ Depth ft	Water Level	(S		scription of Ma 2488 or 2487; 1110-1-2908	Rock-USACE	Sample M3	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or F	Remarks
856.9 68.0		fin- me	e to medium edium dense _TY, CLAYE edium-graine	DED SAND w a-grained, trace to dense (GL Y SAND (SC-5 ed, trace Grave nse (GLACIAL	e Gravel, gray ACIAL OUTW SM), fine to el, reddish bro	wet, 65-4 ASH)	17-17-23 (40) 18" 21-24-47 (71) 18"				
850.9 74.0	-	tra	ce Gravel, b	SM), fine to m prown, moist, n LACIAL TILL)			12-13-15 (28) 18"				
843.9 81.0 842.9 82.0				brown, highly v END OF BOF		80-	16-30-20 (50) 12" 50/1" (REF*)			Auger met refu *Low recovery Water level ob:	
-			Boring	immediately	v backfilled	85— 				to mud rotary o	
-						 90					
						-					
						95 — —					

	mber B180363	8.01			BORING:			for explanation o ST-2	
Geotechnic Marsh Run	al Evaluation				LOCATION:	See attac	ched skete	ch	
	ont of Wayzata	Blvd and	Fairfield Rd	w	DATUM: N	AD 1983	HARN Ad	j MN Hennepin (l	JS Feet)
	a, Minnesota				NORTHING	16	5800	EASTING:	488063
DRILLER:	M. Takada	LOGGED BY:	R. Hu	ıber	START DAT	E	10/17/22	END DATE:	10/17/22
SURFACE ELEVATION:	925.1 ft RIG: 75	07	METHOD: 3 1/4'	' HSA	SURFACING	G:	Asphalt	WEATHER:	Cloudy
Elev./ Elev./ Depth afe f		scription of Ma 2488 or 2487; 1110-1-2908	Rock-USACE EN		Blows (N-Value) Recovery	q _p tsf	MC %	Tests or F	Remarks
<u>923.1</u> 2.0 - -	and brown, mo	Dist	vith Gravel, black		4-4-6 (10) 15" 1-2-2 (4)				
- - - 916.1 - 9.0 -		IL (OL), black,	moist (BURIED		16" 2-2-2 (4) 17" 1-1-2 (3) 16"		44	OC=8%	
913.1 12.0 - - - - -	LEAN CLAY ((ALLUVIUM)	CL), gray, mois	t, medium to stiff		1-2-5 (7) 15" 2-4-6 (10) 13"		20		
	SANDY LEAN moist, stiff (GL	CLAY (CL), Ìtra ACIAL TILL)	ace Gravel, gray,	20-	6-6-11 (17) 17"		31		
				25-	4-5-8 (13*)			*Low recovery	
- /				30-	4-5-6 (11) 18"				
-	Co	ntinued on ne	xt page						

	Se	e Descriptive le	rminology sheet	t for explanation o	of abbreviation
Project Number B1803638.01		BORING:		ST-2	
Geotechnical Evaluation Marsh Run - Phase II		LOCATION: Se	ee attached sket	ch	
NW Quadrant of Wayzata Blvd and Fairfield Rd W		DATUM: NAC) 1983 HARN Ad	lj MN Hennepin (JS Feet)
Minnetonka, Minnesota		NORTHING:	165800	EASTING:	488063
DRILLER: M. Takada LOGGED BY: R. Huber		START DATE:	10/17/22	END DATE:	10/17/22
SURFACE 925.1 ft RIG: 7507 METHOD: 3 1/4" HSA		SURFACING:	Asphalt	WEATHER:	Cloudy
Elev./ Depth ft Elev./ Depth ft Depth ft Elev./ Description of Materials (Soil-ASTM D2488 or 2487; Rock-USACE EM 1110-1-2908)	Sample	Blows (N-Value) Recovery	q _p MC tsf %	Tests or F	Remarks
- SANDY LEAN CLAY (CL), trace Gravel, gray, moist, stiff (GLACIAL TILL) 34.0 SILTY SAND (SM), fine to medium-grained, brown, moist, medium dense (GLACIAL TILL) - - -		4-7-11 (18) 14" 8-10-13 (23)			
884.1 41.0 		18"		Water observe with 40.0 feet of	of tooling in
Boring immediately backfilled				the ground wh Water observe	-
				at end of drillin Water not obse cave-in depth immediately at withdrawal of a	erved to of 30.0 feet ter
- 55					
	_				
-	_				
-	-				
	-				
- 60	-				
· · · · · · · · · · · · · · · · · · ·	-				
	-				
				1	

Project				3.01				BORING:			for explanation o ST-3	
Geotec								LOCATION:	See atta	ached sket	ch	
Marsh F NW Qua				Blvd and	Fairfield	Rd W		DATUM: N	AD 1983	B HARN Ad	j MN Hennepin (l	JS Feet)
Minneto				Biva ana	i unnera			NORTHING	-	65851	EASTING:	488234
DRILLER:		M. Takad		LOGGED BY:		R. Huber		START DAT		10/18/22	END DATE:	10/18/22
SURFACE ELEVATION:	925	.0 ft F	RIG: 75	07	METHOD:	3 1/4" HS	Ą	SURFACING	6:	Grass	WEATHER:	Sur
	Water Level	(Soil-A	De: ASTM D2	scription of Ma 2488 or 2487; 1110-1-2908	Rock-USAC	CE EM	Sample	Blows (N-Value) Recovery	q _e tsf	MC %	Tests or F	Remarks
923.0 2.0		graine	ed, black,	AND (SM), fine moist LEAN CLAY (C vn, moist			5-2	7-8-8 (16) 17" 3-5-5 (10) 18" 7-14-9 (23) 16"		*		
 911.0							10-2	4-7-8 (15*) 1-1-1 (2*) 0"			*Low recovery *No recovery	
14.0 - - -		LEAN	CLAY (C	CL), gray, wet,	soft (ALLU)		-	2-2-2 (4) 18"			Switched to mu drilling at 15 fe	
-						-	20	2-1-2 (3) 17"		27		
		SAND	Y LEAN	CLAY (CL), tr	ace Gravel,		25 - 7	2-2-2 (4) 18"				
		moist,	soft to s	tiff (GLACIAL	TILL)	:	30 - 7	2-3-5 (8) 18"				
-			Cor	ntinued on ne		n Intertec Co				11/01/2022	ST-3	B page 1 of

Project	Num	oer B180363	8.01				BORING:		4	for explanation o	
Geotec	hnica	Evaluation					LOCATION: S	ee atta	ched sket	ch	
		Phase II t of Wayzata	Rive and	Egirfials				D 1983		j MN Hennepin (l	JS Feet)
		t of Wayzata Minnesota	Divu anu	Faimeit			NORTHING:	-	65851	EASTING:	488234
DRILLER:	,	M. Takada	LOGGED BY:		R. Huber		START DATE	-	10/18/22	END DATE:	10/18/22
SURFACE	92	5.0 ft RIG: 75		METHOD:	3 1/4" HSA		SURFACING:		Grass	WEATHER:	Sur
ELEVATION:			scription of Ma	aterials		ole	Blows	1	мс		
Depth ft	Water Level		1110-1-2908	3)			(N-Value) Recovery	q _p tsf	%	Tests or F	Remarks
-		SANDY LEAN moist, soft to s			, gray, 35		4-4-7 (11) 18"				
- - -					40		4-7-8 (15) 15"		*		
-					45		4-6-8 (14) 18"				
-					50	2 	5-5-9 (14) 17"				
- 871.0 54.0 - -		POORLY GRA grained, with ((GLACIAL OU	Gravel, gray, w	SP), fine to et, loose	coarse- 55		6-3-3 (6*) 0"			*No recovery	
-					60		3-3-4 (7) 15"				
_											
1803638.01			ntinued on ne		n Intertec Corp	oration		nt Data:	11/01/2022		B page 2 d

The Science			- 0400202	0.04			S		Terminc	logy sheet	for explanation o	fabbreviations
			er B180363	0.01				BORING:	0	-	ST-3	
Geotec Marsh			Evaluation hase II					LOCATION:	See atta	ached sket	CII	
			of Wayzata	Blvd and	Fairfield	l Rd W	1	DATUM: N	AD 1983	3 HARN Ad	j MN Hennepin (l	JS Feet)
			linnesota	0				NORTHING	1	65851	EASTING:	488234
DRILLER:		Ν	1. Takada	LOGGED BY:		R. Huber	r	START DAT	E: 🔿	10/18/22	END DATE:	10/18/22
SURFACE ELEVATION:	:	925.0) ft RIG: 75	607	METHOD:	3 1/4" HS	SA	SURFACING	G:	Grass	WEATHER:	Sur
Elev./ Depth ft	Water Level			escription of Ma 2488 or 2487; 1110-1-2908	Rock-USAC	CE EM	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or F	Remarks
				ADED SAND (S Gravel, gray, w TWASH)			65-2	9-4-5 (9) 18"	1			
856.0 69.0				(SM), fine to m ray, wet, mediu L)			70-	7-10-15 (25) 18"				
852.0 73.0			medium-grain	Y SAND (SC-3 ed, with Grave nse (GLACIAL	l, reddish bi		75-	11-30-46 (76) 17"				
846.0 79.0 - - 843.0				(SM), fine to m rown, moist, de			80-	15-22-19 (41) 18"				
843.0 82.0 842.5 82.5				brown, highly END OF BOF g immediately	RING		85-	25-50/1" (REF*)			*Low recovery Water level obs to mud rotary o	
-							90—					
							95—					
1803638.01						n Intertec C				:11/01/2022	ST-3	page 3 of

Braun Intertec Corporation

Project Num	ber B1803638.01		See Descriptive Termin BORING:	4	ST-4	
	l Evaluation		LOCATION: See at	ached sket	ch	
Marsh Run - NW Quadrar	Phase II It of Wayzata Blvd and I	Fairfield Rd W	DATUM: NAD 198	3 HARN Ad	lj MN Hennepin (L	IS Feet)
Minnetonka,	-		NORTHING:	166094	EASTING:	488393
DRILLER:	M. Takada LOGGED BY:	R. Huber	START DATE:	10/17/22	END DATE:	10/17/2:
SURFACE 92 ELEVATION: 92	20.7 ft RIG: 7507	METHOD: 3 1/4" HSA	SURFACING:	Asphalt	WEATHER:	Cloud
Elev./ June	Description of Ma (Soil-ASTM D2488 or 2487; I 1110-1-2908	Rock-USACE EM ਤੋਂ	Blows (N-Value) Recovery	MC %	Tests or R	emarks
918.7	FILL: CLAYEY SAND (SC), b moist		2-3-4			
2.0 - 916.7	FILL: SANDY LEAN CLAY (C black, moist		(7) 15"			
shites to a	ORGANIC SOIL (OL), black, TOPSOIL)	moist (BURIED	2-3-3 (6) 12"			
	LEAN CLAY (CL), gray, wet,	soft (ALLUVIUM)	1-1-1 (2) 16"	40	LL=37, PL=16,	PI=21
- //		10-	1-1-2 (3) 18"	32		
- - 906.7		-7	1-1-2 (3) 18"	37	LL=41, PL=19,	PI=22
	SANDY LEAN CLAY (CL), wi moist, medium to stiff (GLAC		2-4-4 (8) 18"			
-			2-4-5 (9) 18"	18		
		25-	1-4-6 (10) 17"			
- <u>891.7</u> 29.0 -	CLAYEY SAND (SC), trace C stiff (GLACIAL TILL)	Gravel, gray, moist,	2-4-5 (9) 18"			
888.7	Continued on ne	xt nage				

	DODINO	OT 4
roject Number B1803638.01	BORING:	ST-4
eotechnical Evaluation arsh Run - Phase II	LOCATION: See attached sketc	h
W Quadrant of Wayzata Blvd and Fairfield Rd W	DATUM: NAD 1983 HARN Adj	MN Hennepin (US Feet)
innetonka, Minnesota	NORTHING: 166094	EASTING: 488393
ILLER: M. Takada LOGGED BY: R. Huber	START DATE: 10/17/22	END DATE: 10/17/22
SURFACE 920.7 ft RIG: 7507 METHOD: 3 1/4" HSA	SURFACING: Asphalt	WEATHER: Cloudy
Elev./ Depth ft (Soil-ASTM D2488 or 2487; Rock-USACE EM 1110-1-2908)	Blows (N-Value) q _p MC Recovery tsf %	Tests or Remarks
SANDY LEAN CLAY (CL), trace Gravel, gray, moist, very stiff (GLACIAL TILL) 35- 40- 40- 40-		Water observed at 25.0 fee at end of drilling.
Boring immediately backfilled		

		ber B180363	8.01				BORING:			ST-5	
		I Evaluation Phase II					LOCATION:	See atta	iched sket	ch	
		it of Wayzata	Blvd and	Fairfield	Rd W		DATUM: N	AD 1983	HARN Ad	j MN Hennepin (l	JS Feet)
		Minnesota					NORTHING	1	65798	EASTING:	488417
ORILLER:		M. Takada	LOGGED BY:		R. Huber		START DAT	E: /	10/17/22	END DATE:	10/17/2
SURFACE ELEVATION:	92	2.5 ft RIG: 75	607	METHOD:	3 1/4" HSA		SURFACING	G:	Asphalt	WEATHER:	Cloud
Elev./ Depth ft	Water Level	De (Soil-ASTM D	scription of Ma 2488 or 2487; 1110-1-290	Rock-USAC	CE EM		Blows (N-Value) Recovery	q _p tsf	MC %	Tests or F	Remarks
920.5 2.0 918.5 4.0 915.5 7.0		FILL: SILTY, C Gravel, grayis FILL: SANDY black, moist FILL: ORGAN FILL: CLAYEN gray, moist	h brown, mois LEAN CLAY (IC SOIL (OL),	t CL), gray an black, mois	rd t 5		4-5-5 (10) 17" 3-3-4 (7) 16" 2-1-1 (2) 14"		×.		
<u>913.5</u> 9.0 - - - - - - 904.5	⊻	LEAN CLAY (soft to medium			wet, 10		4-3-1 (4) 18" 1-1-4 (5) 18" 1-1-1 (2) 18"		32	LL=33, PL=20,	PI=13
- - -		SANDY LEAN moist, mediun	I CLAY (CL), tr n to stiff (GLAC	ace Gravel, CIAL TILL)	gray, 20		2-2-4 (6) 18"				
-					25		2-3-5 (8) 18"				
-					30		3-4-9 (13) 16"				
-		Co	ntinued on ne	ext page		-					

The Science You Build On. Se	ee Descriptive Terminology sheet for explanation of abbreviations
Project Number B1803638.01	BORING: ST-5
Geotechnical Evaluation	LOCATION: See attached sketch
/larsh Run - Phase II NW Quadrant of Wayzata Blvd and Fairfield Rd W	DATUM: NAD 1983 HARN Adj MN Hennepin (US Feet)
Ainnetonka, Minnesota	NORTHING: 165798 EASTING: 488417
PRILLER: M. Takada LOGGED BY: R. Huber	START DATE: 10/17/22 END DATE: 10/17/22
SURFACE ELEVATION: 922.5 ft RIG: 7507 METHOD: 3 1/4" HSA	SURFACING: Asphalt WEATHER: Cloudy
Elev./ Depth to a (Soil-ASTM D2488 or 2487; Rock-USACE EM	Blows (N-Value) q _p MC Recovery tsf % Tests or Remarks
889.5 33.0 33.0 SANDY LEAN CLAY (CL), trace Gravel, gray, moist, medium to stiff (GLACIAL TILL) SANDY LEAN CLAY (CL), trace Gravel, with Sand seams, gray, moist, stiff to very stiff (GLACIAL TILL) <	4-5-5 (10) 18" 8-17-10 (77*) *Low recovery
881.5 41.0 END OF BORING	(27*) Cow recovery Water observed at 12.5 fee while drilling.
Boring immediately backfilled	while drining.
1803638.01 Braun Intertec Corporation	Print Date:11/01/2022 ST-5 page 2 of