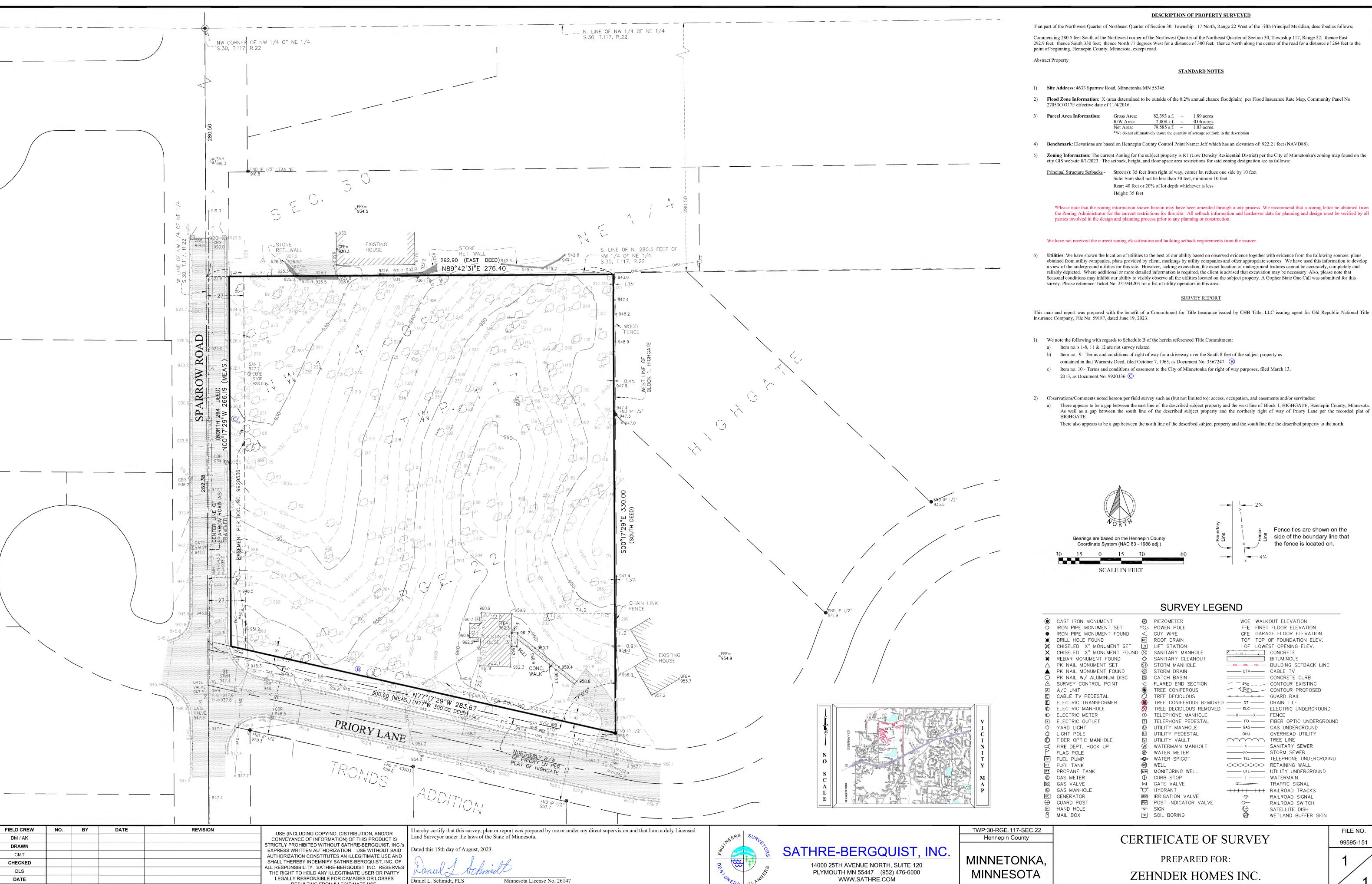


Location Map

Project: Priory Woods Address: 4633 Sparrow Road

"Priory Woods" - Development Narrative


Developer Introduction:

ZEHNDER HOMES, INC. –

Eric Zehnder 10300 10th Ave N Plymouth, Minnesota 55441 Telephone: 651-303-5747

Email: ericzehnder@zehnderhomes.com

Zehnder Homes is proposing to develop a single parcel in the city of Minnetonka, Minnesota that will create a community of 3 detached single-family homes on +/- 1.87 acres of land. The site is located in the NE corner of the intersection of Sparrow Road and Priory Lane. There will not be any new public infrastructure needed for this development. The land will be subdivided into three lots, with two homes having driveways off of Priory Lane, and one home with a driveway on Sparrow Road. The development will be named "Priory Woods" and is a conforming, single-family, R1 development. Care has been taken to minimize grading and the impact to existing trees. The percentage of removed trees is within the allowed percentages. This proposed residential development will consist of single-family style homes.

Minnesota License No. 26147

schmidt@sathre.com

RESULTING FROM ILLEGITIMATE USE.

AUTHORIZATION CONSTITUTES AN ILLEGITIMATE USE AND

SHALL THEREBY INDEMNIFY SATHRE-BERGQUIST, INC. OF

ALL RESPONSIBILITY. SATHRE-BERGQUIST, INC. RESERVES

THE RIGHT TO HOLD ANY ILLEGITIMATE USER OR PARTY

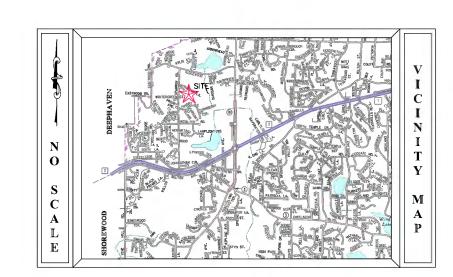
LEGALLY RESPONSIBLE FOR DAMAGES OR LOSSES

RESULTING FROM ILLEGITIMATE USE.

Daniel L. Schmidt, PLS

schmidt@sathre.com

Minnesota License No. 26147


CHECKED

DLS

DATE

8/21/2023

PREPARED FOR PREPARED BY DEVELOPER ZEHNDER HOMES INC. 14240 23RD AVE N SATHRE-BERGQUIST, INC 14000 25th Ave N, Suite 120 PLYMOUTH, MN 55447 Plymouth, MN 55447 PHONE: (952) 476-6000 TOM DEHN || FAX: (952) 476-0104 PHONE: (651) 303-5747 EMAIL: ERICZEHNDER@ZEHNDERHOMES.COM CONTACT: CHARLES WIEMERSLAGE, P.E EMAIL: CWIEMERSLAGE@SATHRE.COM

DESCRIPTION OF PROPERTY SURVEYED

That part of the Northwest Quarter of Northeast Quarter of Section 30, Township 117 North, Range 22 West of the Fifth Principal Meridian, described as follows:

Commencing 280.5 feet South of the Northwest corner of the Northwest Quarter of the Northeast Quarter of Section 30, Township 117, Range 22; thence East 292.9 feet; thence South 330 feet; thence North 77 degrees West for a distance of 300 feet; thence North along the center of the road for a distance of 264 feet to the point of beginning, Hennepin County, Minnesota, except road.

Abstract Property

STANDARD NOTES

- 1) Site Address: 4633 Sparrow Road, Minnetonka MN 55345
- 2) **Flood Zone Information**: X (area determined to be outside of the 0.2% annual chance floodplain) per Flood Insurance Rate Map, Community Panel No. 27053C0317F effective date of 11/4/2016.

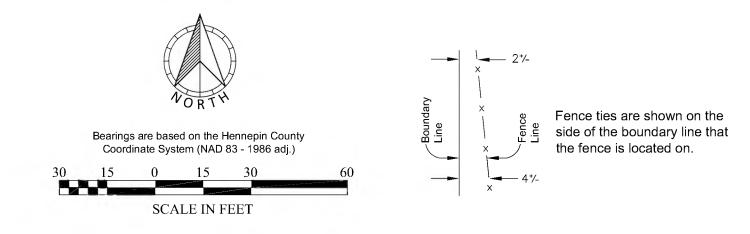
3) Parcel Area Information: Gross Area: 82,393 s.f. \sim 1.89 acres R/W Area:

- *We do not affirmatively insure the quantity of acreage set forth in the description
- 4) Benchmark: Elevations are based on Hennepin County Control Point Name: Jeff which has an elevation of: 922.21 feet (NAVD88).
- 5) **Zoning Information**: The current Zoning for the subject property is R1 (Low Density Residential District) per the City of Minnetonka's zoning map found on the city GIS website 8/1/2023. The setback, height, and floor space area restrictions for said zoning designation are as follows:

<u>Principal Structure Setbacks</u> - Street(s): 35 feet from right of way, corner lot reduce one side by 10 feet Side: Sum shall not be less than 30 feet, minimum 10 feet

> Rear: 40 feet or 20% of lot depth whichever is less Height: 35 feet

*Please note that the zoning information shown hereon may have been amended through a city process. We recommend that a zoning letter be obtained from the Zoning Administrator for the current restrictions for this site. All setback information and hardcover data for planning and design must be verified by all parties involved in the design and planning process prior to any planning or construction.


- We have not received the current zoning classification and building setback requirements from the insurer.
- 6) Utilities: We have shown the location of utilities to the best of our ability based on observed evidence together with evidence from the following sources: plans obtained from utility companies, plans provided by client, markings by utility companies and other appropriate sources. We have used this information to develop a view of the underground utilities for this site. However, lacking excavation, the exact location of underground features cannot be accurately, completely and reliably depicted. Where additional or more detailed information is required, the client is advised that excavation may be necessary. Also, please note that Seasonal conditions may inhibit our ability to visibly observe all the utilities located on the subject property. A Gopher State One Call was submitted for this survey. Please reference Ticket No. 231944203 for a list of utility operators in this area.

SURVEY REPORT

This map and report was prepared with the benefit of a Commitment for Title Insurance issued by CHB Title, LLC issuing agent for Old Republic National Title Insurance Company, File No. 59187, dated June 19, 2023.

- 1) We note the following with regards to Schedule B of the herein referenced Title Commitment:
 - a) Item no.'s 1-8, 11 & 12 are not survey related
 - b) Item no. 9 Terms and conditions of right of way for a driveway over the South 8 feet of the subject property as
 - contained in that Warranty Deed, filed October 7, 1965, as Document No. 3567247. B
 - c) Item no. 10 Terms and conditions of easement to the City of Minnetonka for right of way purposes, filed March 13, 2013, as Document No. 9920336. (C)
- 2) Observations/Comments noted hereon per field survey such as (but not limited to): access, occupation, and easements and/or servitudes:
 - a) There appears to be a gap between the east line of the described subject property and the west line of Block 1, HIGHGATE, Hennepin County, Minnesota. As well as a gap between the south line of the described subject property and the northerly right of way of Priory Lane per the recorded plat of

There also appears to be a gap between the north line of the described subject property and the south line the the described property to the north.

SURVEY LEGEND

			_
O	CAST IRON MONUMENT	(P)	PIEZOI
0	IRON PIPE MONUMENT SET		POWER
•	IRON PIPE MONUMENT FOUND	<	GUY V
• •	DRILL HOLE FOUND	RD	ROOF
×	CHISELED "X" MONUMENT SET	LS	LIFT S
×	CHISELED "X" MONUMENT FOUND	S	SANIT
	REBAR MONUMENT FOUND	$\overline{\Diamond}$	SANIT
	PK NAIL MONUMENT SET	(ST)	STORM
A	PK NAIL MONUMENT FOUND		STORM
\supset	PK NAIL W/ ALUMINUM DISC		CATCH
٨	SURVEY CONTROL POINT	\triangleleft	FLARE
Α	A/C UNIT	*	TREE
	CABLE TV PEDESTAL	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	TREE
E	ELECTRIC TRANSFORMER	**	TREE
Đ	ELECTRIC MANHOLE	X	TREE
	ELECTRIC METER	(T)	TELEP
	ELECTRIC OUTLET	T	
Ċ	YARD LIGHT		UTILIT
I C C D	LIGHT POLE	U	
Ď	FIBER OPTIC MANHOLE	V	UTILIT
$\bar{\exists}$	FIRE DEPT. HOOK UP		WATER
∏ >	FLAG POLE	W	WATER
FP	FUEL PUMP		WATER
FP FT	FUEL TANK	(W)	WELL
PT	PROPANE TANK	MW	MONIT

© GAS METER ₩ GAS VALVE GAS MANHOLE GENERATOR

GUARD POST

HAND HOLE

MAIL BOX

	(D)	PIEZOMETER
	b	POWER POLE
	<	GUY WIRE
	RD	ROOF DRAIN
	LS	LIFT STATION
ND	S	SANITARY MAN
	\Diamond	SANITARY CLEA
	ST	STORM MANHOL
	Ø	STORM DRAIN
		CATCH BASIN
	\triangleleft	FLARED END SE
	*	TREE CONIFERO
	\$	TREE DECIDUOU
	*	TREE CONIFERO
	ZX)	TREE DECIDUOU
	1	TELEPHONE MAI
	T	TELEPHONE PE
	0	UTILITY MANHO
	U	UTILITY PEDEST
	V	UTILITY VAULT
	W	WATERMAIN MA
	₩	WATER METER
	-	WATER SPIGOT
	(W)	WELL
	MW	MONITORING WE
	Φ	CURB STOP
	\bowtie	GATE VALVE
	77	HYDRANT

ZOMETER	WOE WALK	OUT ELEVATION
WER POLE	FFE FIRST	FLOOR ELEVATION
Y WIRE	GFE GARA	GE FLOOR ELEVATION
OF DRAIN	TOF TOP	OF FOUNDATION ELEV.
T STATION	LOF LOWE	ST OPENING ELEV.
NITARY MANHOLE	A 44 4	CONCRETE
NITARY CLEANOUT		BITUMINOUS
ORM MANHOLE	— BSBL — BSBL — BSBL —	BUILDING SETBACK LINE
ORM DRAIN	CTV	
TCH BASIN		CONCRETE CURB
ARED END SECTION	_ 960	
EE CONIFEROUS	960	
EE DECIDUOUS	-000	GUARD RAII
EE CONIFEROUS REMOVED	DT	
EE DECIDUOUS REMOVED		ELECTRIC UNDERGROUND
EPHONE MANHOLE	xx	
_EPHONE PEDESTAL		FIBER OPTIC UNDERGROUND
LITY MANHOLE		GAS UNDERGROUND
LITY PEDESTAL	—— они——	
LITY VAULT	$\sim\sim\sim$	
TERMAIN MANHOLE		SANITARY SEWER
TER METER	>>	STORM SEWER
TER SPIGOT	—— TEL ——	TELEPHONE UNDERGROUND
LL		RETAINING WALL
NITORING WELL	UTL	UTILITY UNDERGROUND
RB STOP		WATERMAIN
TE VALVE	0	TRAFFIC SIGNAL
DRANT		

	OTIETT TROET		
W	WATERMAIN MANHOLE	>	SANITARY SEWER
₩	WATER METER	> >	STORM SEWER
-	WATER SPIGOT	——— TEL ———	TELEPHONE UNDERGR
(W)	WELL		RETAINING WALL
MW	MONITORING WELL	UTL	UTILITY UNDERGROUN
Φ	CURB STOP		WATERMAIN
\bowtie	GATE VALVE	0	TRAFFIC SIGNAL
D	HYDRANT	+++++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS
IRV	IRRIGATION VALVE	-0-	RAILROAD SIGNAL
PIV	POST INDICATOR VALVE	○	RAILROAD SWITCH
•	SIGN	Θ	SATELLITE DISH
SB	SOIL BORING		WETLAND BUFFER SIG

PRELIMINARY PLAT PRIORY WOODS PREPARED FOR:

FILE NO. 99595-151

SATHRE-BERGQUIST, INC. 14000 25TH AVENUE NORTH, SUITE 120 PLYMOUTH MN 55447 (952) 476-6000 WWW.SATHRE.COM

MINNETONKA MINNESOTA

TWP:30-RGE.117-SEC.22

Hennepin County

ZEHNDER HOMES INC.

PRIORY WOODS C.R. DOC. NO. N89°22'01"E 2582.96 KNOW ALL PERSONS BY THESE PRESENTS: That Zehnder Homes Incorporated, a Minnesota Corporation, owner of the following described property: NW CORNER OF NW 1/4 OF NE 1/4 __ _N. LINE OF NW 1/4 OF NE 1/4 S.30, T.117, R.22 I | I \ −S.30, T.117, R.22 That part of the Northwest Quarter of Northeast Quarter of Section 30, Township 117 North, Range 22 West of the Fifth Principal Meridian, described as follows: HENNEPIN COUNTY CIM NE CORNER - S.30, T.117, R.22 HENNEPIN COUNTY CIM Commencing 280.5 feet South of the Northwest corner of the Northwest Quarter of Section 30, Township 117, Range 22; thence East 292.9 feet; thence South 330 feet; thence North 77 degrees West for a distance of 300 feet; thence North along the center of the road for a distance of 264 feet to the point of beginning, Hennepin County, Minnesota, except road. Has caused the same to be surveyed and platted as PRIORY WOODS and does hereby dedicate to the public for public use the public ways and easements for drainage and utility purposes as created by this plat. In witness whereof said Zehnder Homes Incorporated, a Minnesota Corporation, has caused these presents to be signed by its proper officer this Eric Zehnder, Chief Manager STATE OF MINNESOTA, COUNTY OF This instrument was acknowledged before me this _____ ______, 20_____, by Eric Zehnder, Chief Manager of Zehnder Homes Incorporated, a Minnesota Corporation, on behalf of the My Commission Expires:_ S. LINE OF N. 280.5 FEET OF Notary Public, County, Minnesota (Signature) (Notary Printed Name) NW 1/4 OF NE 1/4 _ _ - -16.50 (292.90 EAST DEED) SURVEYORS CERTIFICATE N89°42'31"E 27<u>6.4</u>0_ 265.90 I Daniel L. Schmidt do hereby certify that this plat was prepared by me or under my direct supervision; that I am a duly Licensed Land Surveyor in the State of Minnesota; that this plat is a correct representation of the boundary survey; that all mathematical data and labels are correctly designated on this plat; that all monuments depicted on this plat have been or will be correctly set within one year; that all water boundaries and wet lands, as defined by Minnesota Statutes, Section 505.01, Subd. 3, as of the date of this certificate are shown and labeled on this plat; and all public ways are shown and labeled on this plat. Daniel L. Schmidt, Licensed Land Surveyor Minnesota License No. 26147 STATE OF MINNESOTA, COUNTY OF HENNEPIN This instrument was acknowledged before me this day of , 20 , by Daniel L. Schmidt. N89°21'49"E 265.90 My Commission Expires: Notary Public, Hennepin County, Minnesota (Signature) (Notary Printed Name) CITY COUNCIL, CITY OF MINNETONKA, MINNESOTA This plat of PRIORY WOODS was approved and accepted by the City Council of the City of Minnetonka, Minnesota at a regular meeting thereof held this ______ day of _____ **BLOCK** and said plat is in compliance with the provisions of Minnesota Statutes, Section 505.03, Subd. 2. The basis for the bearing system is the North-South Quarter line of Section 30, City Council, City of Minnetonka, Minnesota Township 117, Range 22 and is assumed to bear South 00 degrees 17 minutes 29 seconds Mayor COUNTY AUDITOR 16.50 25 Hennepin County, Minnesota Denotes a 1/2 inch by 14 inch iron pipe monument set and marked by License No. 26147. and prior years have been paid for land described on this plat, dated this I hereby certify that taxes payable in • Denotes a found open 1/2 inch iron pipe monument. \cap \bigcirc Daniel Rogan, County Auditor Denotes a Found Cast-Iron-Monument ___ -**SURVEY DIVISION** Hennepin County, Minnesota DRAINAGE AND UTILITY EASEMENTS ARE SHOWN THUS: Pursuant to Minnesota Statutes Section 383B.565 (1969), this plat has been approved this ______ day of _____ NORTHERLY R/W OF (300.60 MEASURED) (N77°W 300.00 DEED) Chris F. Mavis, County Surveyor COUNTY RECORDER Hennepin County, Minnesota I hereby certify that the within plat of PRIORY WOODS was recorded in this office this ______ day of ________, 20______, at ______o'clock ____M. Amber Bougie, County Recorder NOT TO SCALE Being 7 feet in width and adjoining lot lines, unless otherwise SATHRE-BERGQUIST, INC. indicated, and being 10 feet in width and adjoining right of way lines, unless otherwise indicated, as shown on this plat. HENNEPIN COUNTY CIM

DATE

XX/XX/XX

CHARLES A. WIEMERSLAGE, P.E. Date: 09/01/23

Lic. No. 49/80

SHEET	Description
01	Title Sheet
02	Final Utility Plan
03	Final Grading Plan
04	Steep Slope Plan
05	Erosion Control Plan
06	Amended Soils Plan
07-08	Tree Preservation Plan
09	Construction Details

Lots: 3 Single Family Lots
Front Yard Setback: 35'
Side Yard Setback: 30' total - 10 min' Side Yard Setback Corner Lot: 25' Rear Yard Setback: 40'

R1 - Zoning 110 Ft min at Setback line 125 Ft Deep 22,000 sf

PREPARED BY

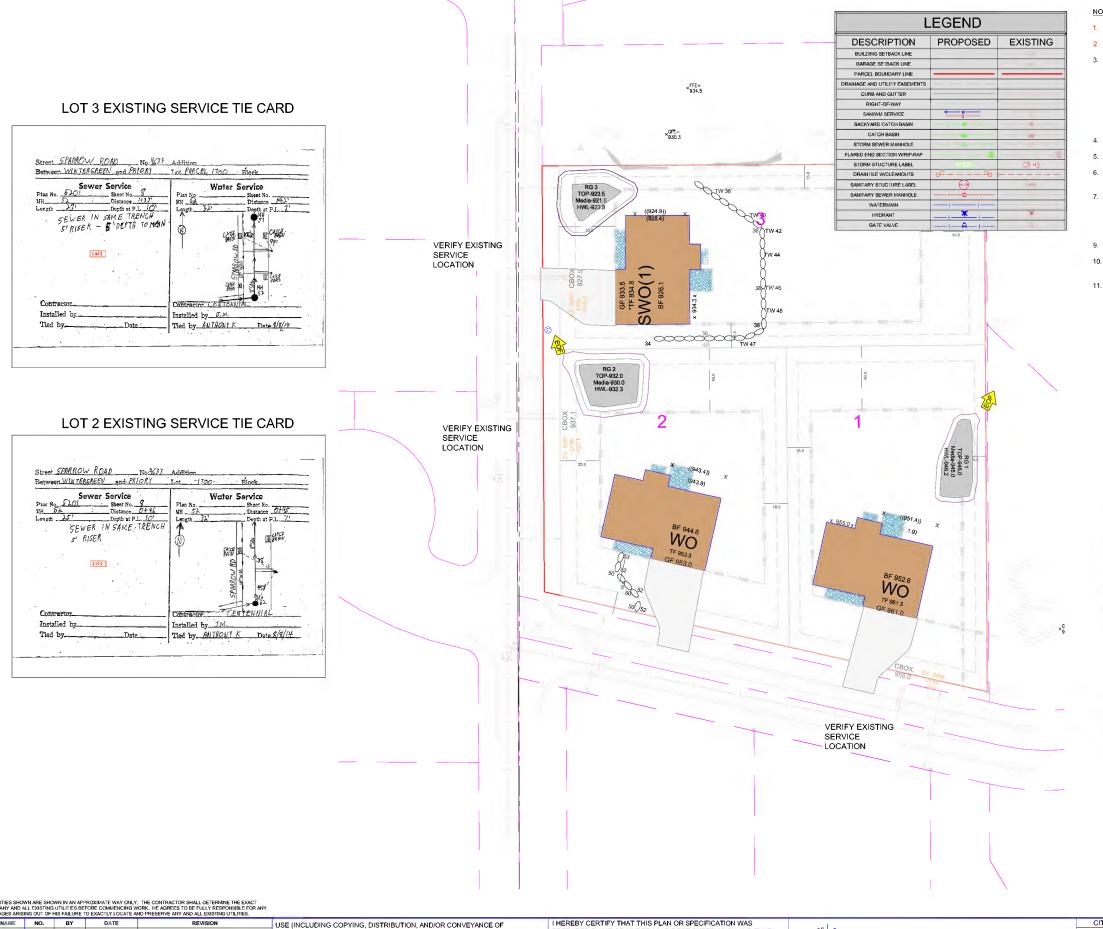
PREPARED FOR

CONTACT : CHARLES WIEMERSLAGE, P.E. EMAIL: CWIEMERSLAGE@SATHRE.COM

ZEHIJDER HOMES, INC 10300 10th Ave N. Plymouth, MN 55441

PHONE: (651) 303-5745

EMAIL: ERICZEHNDER@ZEHNERHHOMES.COM


CITY PROJECT NO.

MINNETONKA, MINNESOTA

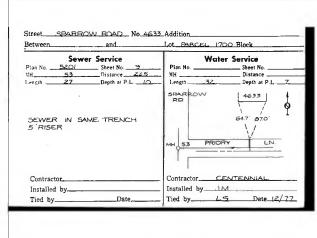
TITLE SHEET **PRIORY WOODS** ZEHNDER HOMES, INC.

FILE NO. 99595-151

01

NOTES:

- EXISTING SERVICES TO BE REUSED AS APPROPRIATE
- VERIFY LOCATIONS & CONDITION OF ALL EXISTING SERVICES. REMOVE AND REPLACE AS NECESSARY
- REPLACEMENT SERVICES SHALL BE


SANITARY: 6" PVC SDR26 AND RISER TO BE SDR 26.

WATER TO BE 1.5" COPPER - ONE CONTIGUOUS PIECE, NO JOINTS OR SPLICING ALLOWED IN ROW

**REMOVE & REPLACE STREET IN KIND AS NECESSARY FOR NEW SERVICES CONNECTIONS NEEDED. EXISTING SERVICE TO BE REMOVED BACK TO MAIN - CORP STOP SHALL BE SHUT OFF AT MAIN PRIOR TO TAPPING NEW

- CURB BOXES TO HAVE EXTENSION RODS TO CURB STOP.
- ALL SEWER SERVICES ARE LOCATED 3' DOWNSTREAM OF WATER SERVICES.
- THE CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS, VERIFY EXISTING INVERT LOC. & ELEV. AND NOTIFY THE OWNER OF ANY DIFFERENCES. PRIOR TO BEGINNING CONSTRUCTION
- UNLESS OTHERWISE NOTED, OR AS SPECIFIED IN THE ABOVE NOTE, ALL MATERIALS, CONSTRUCTION TECHNIQUES AND TESTING SHALL CONFORM TO THE 1999 ED. OF THE "STANDARD UTILITIES SPECIFICATIONS FOR WATER MAIN AND SERVICE LINE INSTALLATION AND SANITARY SEWER AND STORM SEWER INSTALLATION BY THE CITY PEGICIALERING ASSOCIATION OF MINI," AND TO THE "STANDARD SPECIFICATION FOR HIGHWAY CONSTRUCTION" MINN. DEPT. OF TRANS., 2000 EDITION, INCLUDING THE CURRENT ADDENDUM.
- WATER SERVICE TO HAVE CURB STOP & BOX INSTALLED PER DETAIL 518.
- CONNECT TO WATERMAIN WITH CORPORATION STOP AND TAPPING SADDLE PER CITY OF MINNETONKA SPECIAL PROVISIONS SEE 2504 WATER MAIN 2611.2D .
- CORPORATIONS MUELLER H15000 OR FORD F 600 SADDLES SMITH-BLAIR 315 OR 317

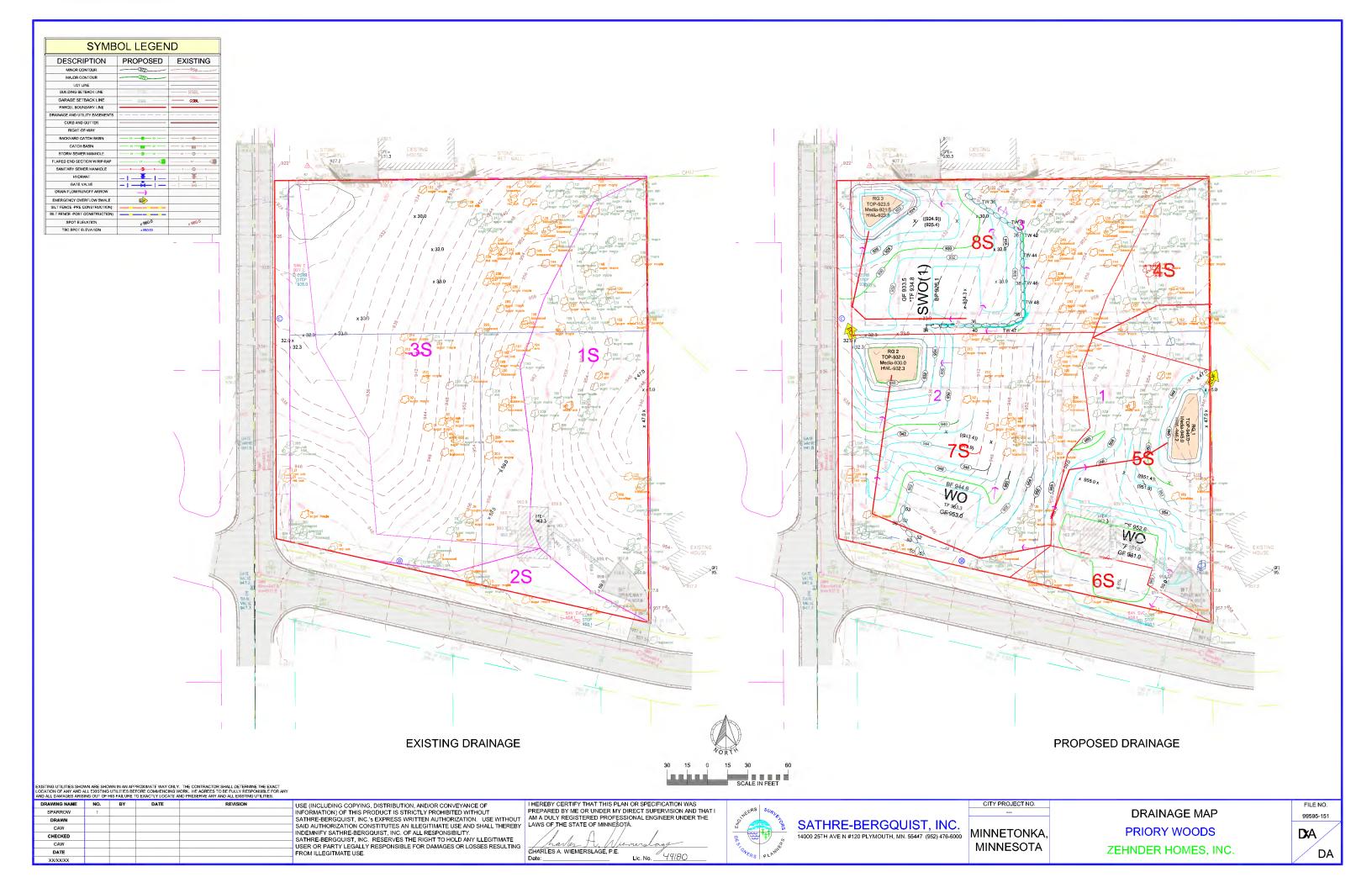
LOT 1 EXISTING SERVICE TIE CARD

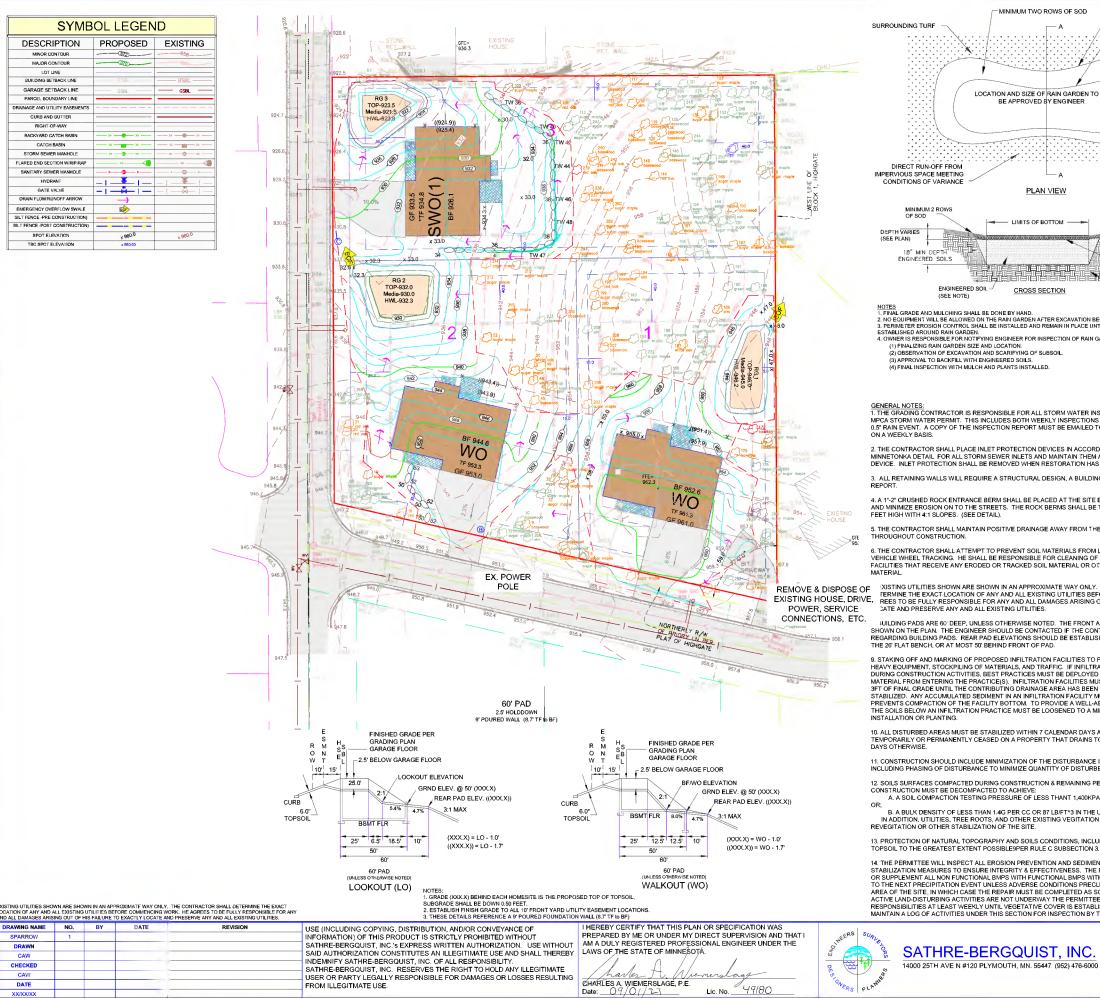
XX/XX/XX

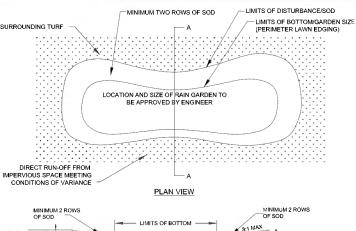
DRAWING NAME	NO.	BY	DATE	REVISION	USE (INCLUDING COPYING, DISTRIBUTION, AND/OR CONVEYANCE OF
SPARROW	1				INFORMATION) OF THIS PRODUCT IS STRICTLY PROHIBITED WITHOUT
DRAWN					SATHRE-BERGQUIST, INC.'s EXPRESS WRITTEN AUTHORIZATION. USE WITHOUT
CAW					SAID AUTHORIZATION CONSTITUTES AN ILLEGITIMATE USE AND SHALL THEREBY
CHECKED					INDEMNIFY SATHRE-BERGQUIST, INC. OF ALL RESPONSIBILITY. SATHRE-BERGQUIST, INC. RESERVES THE RIGHT TO HOLD ANY ILLEGITIMATE
CAW					USER OR PARTY LEGALLY RESPONSIBLE FOR DAMAGES OR LOSSES RESULTING
DATE					FROM ILLEGITMATE USE.

I HEREBY CERTIFY THAT THIS PLAN OR SPECIFICATION WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA

Vienerslags CHARLES A. WIEMERSLAGE, P.E. Date: 09/01/2-3 *| 49180* Lic. No.




SATHRE-BERGQUIST, INC. 14000 25TH AVE N #120 PLYMOUTH, MN, 55447 (952) 476-6000 MINNESOTA


CITY PROJECT NO. MINNETONKA,

UTILITY PLAN PRIORY WOODS ZEHNDER HOMES, INC.

FILE NO. 99595-151

3" DOUBLE SHREDDED HARDWOOD MULCH VER EXCAVATE BASIN TO SAND' OILS APPROXIMATELY 6FT BELO ENGINEERED SOIL CROSS SECTION

- NOTES

 1. FINIAL GRADE AND MULCHING SHALL BE DONE BY HAND.

 2. NO EQUIPMENT WILL BE ALLOWED ON THE RAIN GARDEN AFTER EXCAVATION BEGINS.

 3. PERIMIETER EROSION CONTROL SHALL BE INSTALLED AND REMAIN IN PLACE UNTIL TURF IS ESTABLLISHED AROUND RAIN GARDEN.
- ESTABLISHED AROUND RAIN GARDEN. 4. OWNER IS RESPONSIBLE FOR NOTIFYING ENGINEER FOR INSPECTION OF RAIN GARDEN FOR
- (1) FINALIZING RAIN GARDEN SIZE AND LOCATION. (2) OBSERVATION OF EXCAVATION AND SCARIFYING OF SUBSOIL.
- (3) APPROVAL TO BACKFILL WITH ENGINEERED SOILS.
- (4) FINAL INSPECTION WITH MULCH AND PLANTS INSTALLED.

GENERAL NOTES:

1. THE GRADING CONTRACTOR IS RESPONSIBLE FOR ALL STORM WATER INSPECTIONS ACCORDING TO THE MPCA STORM WATER PERMIT. THIS INCLUDES BOTH WEEKLY INSPECTIONS AND INSPECTIONS DONE AFTER A 0.5" RAIN EVENT. A COPY OF THE INSPECTION REPORT MUST BE EMAILED TO THE ENGINEER AND DEVELOPER

2. THE CONTRACTOR SHALL PLACE INLET PROTECTION DEVICES IN ACCORDANCE WITH THE CITY OF MINNETONKA DETAIL FOR ALL STORM SEWER INLETS AND MAINTAIN THEM AS AN EFFECTIVE SILT CONTROL DEVICE. INLET PROTECTION SHALL BE REMOVED WHEN RESTORATION HAS BEEN ESTABLISHED.

3. ALL RETAINING WALLS WILL REQUIRE A STRUCTURAL DESIGN, A BUILDING PERMIT & A FINAL INSPECTION REPORT.

4. A 1"-2" CRUSHED ROCK ENTRANCE BERM SHALL BE PLACED AT THE SITE ENTRANCE, TO REPLACE SILT FENCE, AND MINIMIZE EROSION ON TO THE STREETS. THE ROCK BERMS SHALL BE THE WIDTH OF THE ENTRANCE AND 2 FEET HIGH WITH 4:1 SLOPES. (SEE DETAIL).

5. THE CONTRACTOR SHALL MAINTAIN POSITIVE DRAINAGE AWAY FROM THE BUILDING PAD AND STREET AREAS

6. THE CONTRACTOR SHALL ATTEMPT TO PREVENT SOIL MATERIALS FROM LEAVING THE SITE BY EROSION AND VEHICLE WHEEL TRACKING. HE SHALL BE RESPONSIBLE FOR CLEANING OF STREET, BOULEVARD AND UTILITY FACILITIES THAT RECEIVE ANY ERODED OR TRACKED SOIL MATERIAL OR OTHER CONSTRUCTION DEBRIS OR

REMOVE & DISPOSE OF EXISTING HOUSE, DRIVE.

EXISTING H CATE AND PRESERVE ANY AND ALL EXISTING UTILITIES.

> IUILDING PADS ARE 60' DEEP, UNLESS OTHERWISE NOTED. THE FRONT AND REAR BUILDING PAD LINES ARE SHOWN ON THE PLAN. THE ENGINEER SHOULD BE CONTACTED IF THE CONTRACTOR HAS ANY QUESTIONS REGARDING BUILDING PADS. REAR PAD ELEVATIONS SHOULD BE ESTABLISHED BASED OFF THE 2:1 SLOPE FROM THE 26' FLAT BENCH, OR AT MOST 50' BEHIND FRONT OF PAD.

9. STAKING OFF AND MARKING OF PROPOSED INFILTRATION FACILITIES TO PREVENT SOIL COMPACTION BY 9. STAKING OFF AND MARKING OF PROPOSED INFILTRATION FACILITIES TO PREVENT SOIL COMPACTION BY HEAVY EQUIPMENT, STOCKPILING OF MATERIALS, AND TRAFFIC. IF, INFILTRATION FACILITIES AND IN PLACE DURING CONSTRUCTION ACTIVITIES, BEST PRACTICES MUST BE DEPLOYED TO PREVENT SEDIMENT AND OTHER MATERIAL FROM ENTERING THE PRACTICE(S). INFILTRATION FACILITIES MUST NOT BE EXCAVATED TO WITHIN 3FT OF FINAL GRADE UNTIL THE CONTRIBUTING DRAINAGE AREA HAS BEEN CONSTRUCTED AND FULLY STABILIZED. ANY ACCUMULATED SEDIMENT IN AN INFILTRATION FACILITY MUST BE REMOVED IN A MANNER THAT PREVENTS COMPACTION OF THE FACILITY BOTTOM. TO PROVIDE A WELL-AERATED, HIGHLY PROUS SURFACE, THE SOILS BELOW AN INFILTRATION PRACTICE MUST BE LOOSENED TO A MINIMUM OF 18 INCHES PRIOR TO INSTALLATION OF PENANTIAG.

10. ALL DISTURBED AREAS MUST BE STABILIZED WITHIN 7 CALENDAR DAYS AFTER LAND-DISTURBING WORK HAS TEMPORARILY OR PERMANENTLY CEASED ON A PROPERTY THAT DRAINS TO AN IMPAIRED WATER, WITHIN 14

11. CONSTRUCTION SHOULD INCLUDE MINIMIZATION OF THE DISTURBANCE INTENSITY AND DURATION, INCLUDING PHASING OF DISTURBANCE TO MINIMIZE QUANTITY OF DISTURBED AREA AT ANY ONE TIME.

12. SOILS SURFACES COMPACTED DURING CONSTRUCTION & REMAINING PERVIOUS UPON COMPLETION OF CONSTRUCTION MUST BE DECOMPACTED TO ACHIEVE

A. A SOIL COMPACTION TESTING PRESSURE OF LESS THANT 1,400KPA OR 200PSI IN THE UPPER 12" OF SOIL

OK;
B. A BULK DENSITY OF LESS THAN 1.4G PER CC OR 87 LB/FT^3 IN THE UPPER 12° OF SOIL.
IN ADDITION, UTILITIES, TREE ROOTS, AND OTHER EXISTING VEGITATION MUST BE PROTECTED UNTIL FINAL REVEGITATION OR OTHER STABILIZATION OF THE SITE.

13. PROTECTION OF NATURAL TOPOGRAPHY AND SOILS CONDITIONS, INCLUDED RETENTION ON SITE OF NATIVE TOPSOIL TO THE GREATEST EXTENT POSSIBLE9PER RULE C SUBSECTION 3.1A)

14. THE PERMITTEE WILL INSPECT ALL EROSION PREVENTION AND SEDIMENT CONTROL FACILITIES AND SOIL STABILIZATION MEASURES TO ENSURE INTEGRITY & EFFECTIVENESS. THE PERMITTEE WILL REPAIR, REPLACE OR SUPPLEMENT ALL NON FUNCTIONAL BMPS WITH FUNCTIONAL BMPS WITHIN 48HRS OF DISCOVERY & PRIOR TO THE NEXT PRECIPITATION EVENT UNLESS ADVERSE CONDITIONS PRECLUDE ACCESS TO THE RELEVAN AREA OF THE SITE. IN WHICH CASE THE REPAIR MUST BE COMPLETED AS SOON AS CONDITIONS ALLOW. WHEN ACTIVE LAND-DISTURBING ACTIVITIES ARE NOT UNDERWAY THE PERMITTEE WILL PERFORM THESE RESPONSIBILITIES AT LEAST WEEKLY UNTIL VEGETATIVE COVER IS ESTABLISHED. THE PERMITTEE WILL MAINTAIN A LOG OF ACTIVITIES UNDER THIS SECTION FOR INSPECTION BY THE DISTRICT ON REQUEST.

CITY PROJECT NO.

MINNETONKA,

MINNESOTA

ENGINEERED SOIL
TOP 8" OF RAING GARDEN SHALL BE ENGINEERED SOILS.
USE ON SITE SOILS FOR THE REMAINING 12" PROVIDED THAT SAND SEEM IS
INTERSECTED WHEN BASIN IS CONSTRUCTED. SHOULD SAND SEEM NOT BE
FOUND THEN THE ENGINEERED SOILS LISTED BELOW SHALL BE USED.

FOUND THEN THE ENGINEERED SOILS LISTED BELOW SHALL BE USEU. (DCSWCD MIX B)
80% COARSE-WASHED SAND (MNDOT 3126)
20% LEAF-LITTER COMPOST (ORGANIC, GRADE 2, MNDOT 3890) NO TOPSOIL OR ON-SITE SOILS MAY BE USED IN ENGINEERED SOIL MIX UNLESS APPROVED BY THE ENGINEER. 3 RING INFILTROMETOR TESTING AND INFILTRATION TEST ON ENGINEERED SOILS MAY BE REQUIRED AS DIRECTED BY THE ENGINEER.

UBSOIL TYPE	SUBSOIL TYPE	RECOM. DEPTH
Α	SAND/GRAVEL	12"-18"
В	SAND WITH CLAY OR SILT	9"-12"
С	CLAY OR SILT WITH SAND	6"-9"
D	CLAYS OR SILTS	6"

<u>NOTE</u>: RAIN GARDEN VEGETATION SHALL BE GARDEN VARIETY PERENNIALS, SHRUBS, OR NATIVE PLANTS FROM A CONTAINER (PLUG TO HALF GALLON SIZE) PLACED ACCORDING TO OR AS APPROVED BY THE ENGINEER

1. Delineate the location of areas not to be disturbed before work begins

- 2. Establish sediment control practices on all down gradient perimeters before any u gradient land disturbing activities begin. These practices shall remain in place until final stabilization has been established.
- 3. Install all perimeter sediment control devices and construction entrances. The timing of installation of sediment control practices may be adjusted in order to accommodate short-term activities, but sediment control practices must be installed before the next
- precipitation event even if the short-term activity is not complete 4. Contact the City for approval of the sediment control devices.
- Rough grade the site.

- 8. Install lawn and landscape & soil amendments. Restore all disturbed areas.
- 10. Clean all storm sewer and conveyance systems.
 11. After all disturbed areas are stabilized, obtain approval from the City and/or
- Watershed District.
- 12. Remove all temporary sediment control devices

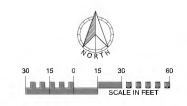
- CONSTRUCTION NOTES
 1. INSTALL SILT FENCE AS SHOWN ON PLAN, AS REQUIRED BY THE CITY OF MINNETONKA OR
- 2. INSPECT SILT FENCE, AND ROCK ENTRANCE BERM AFTER ALL RAINFALL EVENTS AS REQUIRED BY THE NPDES PERMIT
- 3. WO PADS 3:1 MAX. ALL OTHER SLOPES 4:1 MAX (UNLESS NOTED)

RESTORATION - 1.3 ACRES
 A. RESTORE ALL DISTURBED AREAS WITH AMENDED SOILS. AMENDED SOILS SHALL CONSIST OF 2 OF COMPOST TILLED INTO 6" OF TOP SOIL. COMPOST SHALL MEET MNDOT SPEC 3890.18 GRADE 1. SOIL AMENDMENTS SHALL BE COMPLETED AFTER CONSTRUCTION IS COMPLETE TO AVOID COMPACTION. (APPROXIMATELY 35,791 SF).

- SEED POND SLOPES AND DETENTION AREAS WITH MN/DOT 310 OR BWSR P8 SEED MIX AT A RATE OF 100 LBS./ACRE AND FERTILIZE WITH 20-0-10 AT 100 LBS./ACRE. SEED WETLAND BUFFER AREAS WITH MINDOT 350-MESIC PRAIRIE (36.5 PLS LBS/AC) OR BWSR 35-241 SEW MIX AND FERTILIZE WITH 20-0-10 AT 100 LBS./ACRE. (REFER TO WETLAND CREATION/BANKING PLAN FOR WETLAND SEED MIX REQUIREMENTS).

- PLAN FOR WETLAND SEED MIX REQUIREMENTS).

 C. SEED ALL OTHER DISTURBED AREAS WITH RESIDENTIAL TURN 270 AT A RATE OF 100 LBS./ACRE AND FERTILIZE WITH 200-10 AT 100 LBS./ACRE. (UNLESS OTHERWISE NOTED)


 D. ONLY PHOSPHOROUS FREE FERTILIZER IS TO BE USED ON SITE.

 E. MULCH WITH TYPE 1 AT A RATE OF 2 TONS/ACRE AND DISC ANCHOR IMMEDIATELY AFTER PLACEMENT. USE WOODFIBER BLANKET ON ALL SLOPES 3:1 (FT) OR GREATER.

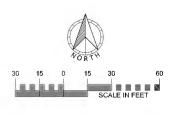
 F. MAINTAIN ALL SLIT FERDE UNTIL TURY HAS BEEN ESTABLISHED.

 G. RESTORATION WORK WILL BE COMPLETED WITHIN 72 HOURS OF GRADING COMPLETION.

 H. ALL WETLAND BUFFERS AND FULL CONSERVATION EASEMENT SHALL BE FULLY ESTABLISHED IN NATIVE VEGETATION BY A QUALIFIED RESTORATION COMPANY. NO TURF OR LAWN MAINTENANCE ACTIVITIES ARE ALLOWED WITHIN THE BUFFER AREAS. ANY REROSION BLANKET INSIDE THE CONSERVATION EASEMENT MUST BE FULLY BIODEGRADEABLE SUCH AS S318D OR \$328D.
- 5. GRADE BACK 1:1 3' FROM FACE OF ALL RETAINING WALLS
- 6. SILT FENCE BEFORE GRADING 1,500 LF AFTER GRADING 305 LF
- TOPSOIL SHALL BE STOCKPILED AND SAVED FOR RESPREAD AFTER CONSTRUCTION IS COMPLETE. ALL DISTURBED AREAS SHALL BE RESTORED WITH TOPSOIL MEETING RPBCWD'S DEFINITION (INCLUDING AT LEAST 5% ORGANIC MATERIAL).
- DRAIN ALL ROOF WATER TO RAIN GARDENS VIA GUTTERS & DOWNSPOUTS OR SIMILAR METHOD TO MAXIMIZE HARD COVER RUNOFF TO RAIN GARDENS.

GRADING PLAN PRIORY WOODS ZEHNDER HOMES, INC.

FILE NO 99595-151


03

20% SLOPE AREA

30% SLOPE AREA

SYMBOL LEGEND			
DESCRIPTION	PROPOSED	EXISTING	
MINOR CONTOUR		958	
MAJOR CONTOUR			
LOT LINE			
BUILDING SETBACK LINE	BSB_	BSBL	
GARAGE SETBACK LINE	GSBL —	GSBL —	
PARCEL BOUNDARY LINE			
DRAINAGE AND UTILITY EASEMENTS			
CURB AND GUTTER			
RIGHT-OF-WAY			
BACKYARD CATCH BASIN	»»		
CATCH BASIN			
STORM SEWER MANHOLE			
FLARED END SECTION W/RIP-RAP	«	«	
SANITARY SEWER MANHOLE	─-> — \$ —->—		
HYDRANT	_11	_ I _ W _ I _	
GATE VALVE	- i — i — i —	-	
DRAIN FLOW/RUNOFF ARROW	→		
EMERGENCY OVERFLOW SWALE	E C		
SILT FENCE -PRE CONSTRUCTION)			
SILT FENCE -POST CONSTRUCTION)			
SPOT ELEVATION	0.08e x	× 980.0	
TBC SPOT ELEVATION	x 980 CO		

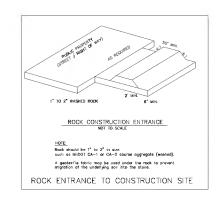
XISTING UTILITIES SHOWN ARE SHOWN IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR SHALL DETERMINE THE EXACT COATION OF ANY AND ALL EXISTING UTILITIES BEFORE COMMENCING WORK. HE AGREES TO BE FULLY RESPONSIBLE FOR ANY NO ALL DAMAGES ARISING OUT OF HIS FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL EXISTING UTILITIES.

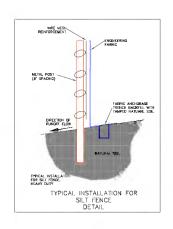
DRAWING NAME	NO.	D1	DATE	REVISION	JUSE (INCLUDING COPYING, DISTRIBUTION, AND/OR CONVEYANCE OF
SPARROW	1				INFORMATION) OF THIS PRODUCT IS STRICTLY PROHIBITED WITHOUT
DRAWN					SATHRE-BERGQUIST, INC.'s EXPRESS WRITTEN AUTHORIZATION. USE WITHOUT
CAW					SAID AUTHORIZATION CONSTITUTES AN ILLEGITIMATE USE AND SHALL THEREBY
CHECKED					INDEMNIFY SATHRE-BERGQUIST, INC. OF ALL RESPONSIBILITY. SATHRE-BERGQUIST, INC. RESERVES THE RIGHT TO HOLD ANY ILLEGITIMATE
CAW					USER OR PARTY LEGALLY RESPONSIBLE FOR DAMAGES OR LOSSES RESULTING
DATE					FROM ILLEGITMATE USE.
XX/XX/XX					

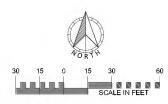
I HEREBY CERTIFY THAT THIS PLAN OR SPECIFICATION WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

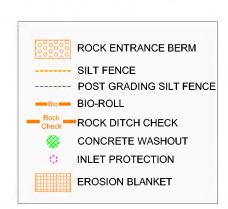
AWS OF THE STATE OF MINNESOTA.
Charles A. Wiemerslage
HARLES A. WIEMERSLAGE, P.E.
late: 09/01/23 Lic. No. <u>49/80</u>

) n	SATHRE-BERGQUIST, INC.
,	14000 25TH AVE N #120 PLYMOUTH, MN. 55447 (952) 476-6000


	CITY PROJECT NO.
<u>C.</u>	MINNETONKA, MINNESOTA


STEEP SLOPE PLAN
PRIORY WOODS
ZEHNDER HOMES, INC.


FILE NO. 99595-151



SYMBOL LEGEND							
DESCRIPTION	PROPOSED	EXISTING					
MINOR CONTOUR		958					
MAJOR CONTOUR		-					
LOT LINE							
BUILDING SETBACK LINE	- ASR	BSBL					
GARAGE SETBACK LINE	GSBL	GSBL —					
PARCEL BOUNDARY LINE							
DRAINAGE AND UTILITY EASEMENTS							
CURB AND GUTTER							
RIGHT-OF-WAY							
BACKYARD CATCH BASIN							
CATCH BASIN	«»						
STORM SEWER MANHOLE							
FLARED END SECTION W/RIP-RAP	«	«					
SANITARY SEWER MANHOLE							
HYDRANT	_11	- -					
GATE VALVE	- i — — i —	- - 📈 -					
DRAIN FLOW/RUNOFF ARROW	-→						
EMERGENCY OVERFLOW SWALE	EOP						
SILT FENCE -PRE CONSTRUCTION)							
SILT FENCE -POST CONSTRUCTION)							
SPOT ELEVATION	× 980.0	× 960.0					
TBC SPOT ELEVATION	x 960 00						

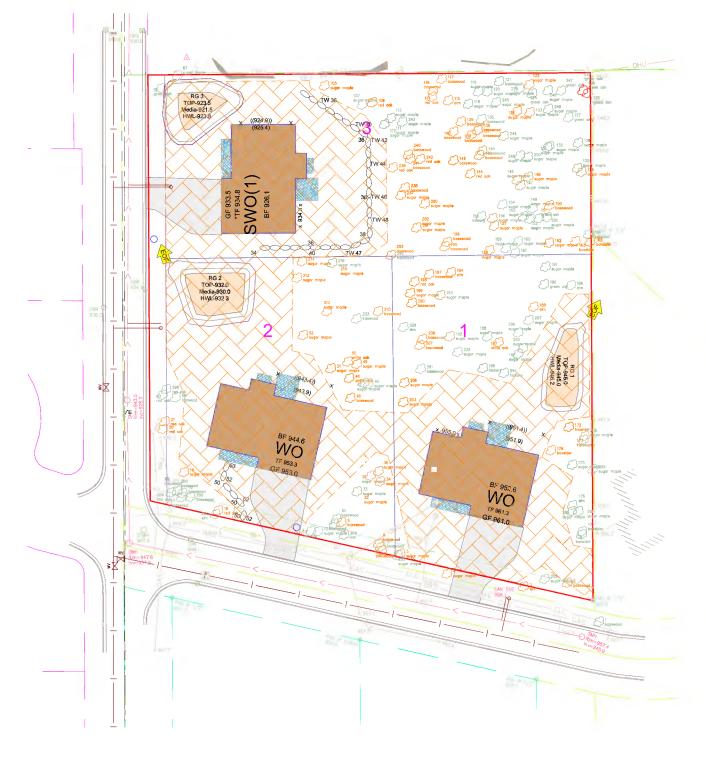
EXISTING UTILITIES SHOWN ARE SHOWN IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF MAY AND ALL EXISTING UTILITIES BEFORE COMMENCING WORK. HE AGREEST OB BE FULLY RESPONSIBLE FOR AN AND ALL DAMAGES ARISING OUT OF HIS FAILURE TO EXACTLY LOCATE AND PRESERVE MAY AND ALL EXISTING UTILITIES.

DRAWING NAME	NU.	ВТ	DATE	REVISION	J USE (INCLUDING COPYING, DISTRIBUTION, AND/OR CONVEYANCE OF
SPARROW	1				INFORMATION) OF THIS PRODUCT IS STRICTLY PROHIBITED WITHOUT
DRAWN					SATHRE-BERGQUIST, INC.'s EXPRESS WRITTEN AUTHORIZATION. USE WITHOUT
CAW					SAID AUTHORIZATION CONSTITUTES AN ILLEGITIMATE USE AND SHALL THEREBY
CHECKED					INDEMNIFY SATHRE-BERGQUIST, INC. OF ALL RESPONSIBILITY. SATHRE-BERGQUIST, INC. RESERVES THE RIGHT TO HOLD ANY ILLEGITIMATE
CAW					USER OR PARTY LEGALLY RESPONSIBLE FOR DAMAGES OR LOSSES RESULTING
DATE					FROM ILLEGITMATE USE.
XX/XX/XX					

I HEREBY CERTIFY THAT THIS PLAN OR SPECIFICATION WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

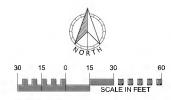
CHARLES A. WIEMERSLAGE, P.E. Date: 09/01/73 Lic. No. 49/80	LAWS OF THE STATE OF MINNESO	υτά.
	Charles A. Wi	emerslage
		Lic. No. 49/80

ORS	SATHRE-BERGQUIST, INC.
0	14000 25TH AVE N #120 PLYMOUTH, MN. 55447 (952) 476-6000


	CITY PROJECT NO.
<u>C.</u>	MINNETONKA MINNESOTA

EROSION CONTROL PLAN
PRIORY WOODS
ZEHNDER HOMES, INC.

FILE NO. 99595-151


SYMB	SYMBOL LEGEND							
DESCRIPTION	PROPOSED	EXISTING						
MINOR CONTOUR		958						
MAJOR CONTOUR		-						
LOT LINE								
BUILDING SETBACK LINE	BSB_	BSBL						
GARAGE SETBACK LINE	GSBL	GSBL						
PARCEL BOUNDARY LINE								
DRAINAGE AND UTILITY EASEMENTS								
CURB AND GUTTER								
RIGHT-OF-WAY								
BACKYARD CATCH BASIN		»						
CATCH BASIN								
STORM SEWER MANHOLE		»»						
FLARED END SECTION W/RIP-RAP	«	«						
SANITARY SEWER MANHOLE								
HYDRANT	-1							
GATE VALVE	-	-						
DRAIN FLOW/RUNOFF ARROW								
EMERGENCY OVERFLOW SWALE	EOF							
SILT FENCE -PRE CONSTRUCTION)								
SILT FENCE -POST CONSTRUCTION)								
SPOT ELEVATION	0.08e x	0.08e x						
TBC SPCT ELEVATION	x 960 00							

SOIL AMENDMENT NOTES

- RESTORE ALL DISTURBED AREAS SHALL BE RESTORED WITH AMENDED SOILS. AMENDED SOILS SHALL CONSIST OF 2 OF COMPOST TILLED INTO 6" OF TOP SOIL. COMPOST SHALL MEET MNDOT SPEC 3890.18 GRADE 1. SOIL AMENDMENTS SHALL BE COMPLETED AFTER CONSTRUCTION IS COMPLETE TO AVOID COMPACTION.
- SEED ALL AMENDED AREAS WITH RESIDENTIAL TURN 270 AT A RATE OF 100 LBS./ACRE AND FERTILIZE WITH 20-0-10 AT 100 LBS./ACRE. (UNLESS OTHERWISE NOTED)
- 3. ONLY PHOSPHOROUS FREE FERTILIZER TO BE USE DON SITE.

EXISTING UTILITIES SHOWN ARE SHOWN IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR SHALL DETERMINE THE EXACT COCATION OF ANY AND ALL EXISTING UTILITIES BEFORE COMMENCING WORK. HE AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES ARISING OUT OF HIS FALURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL EXISTING UTILITIES.

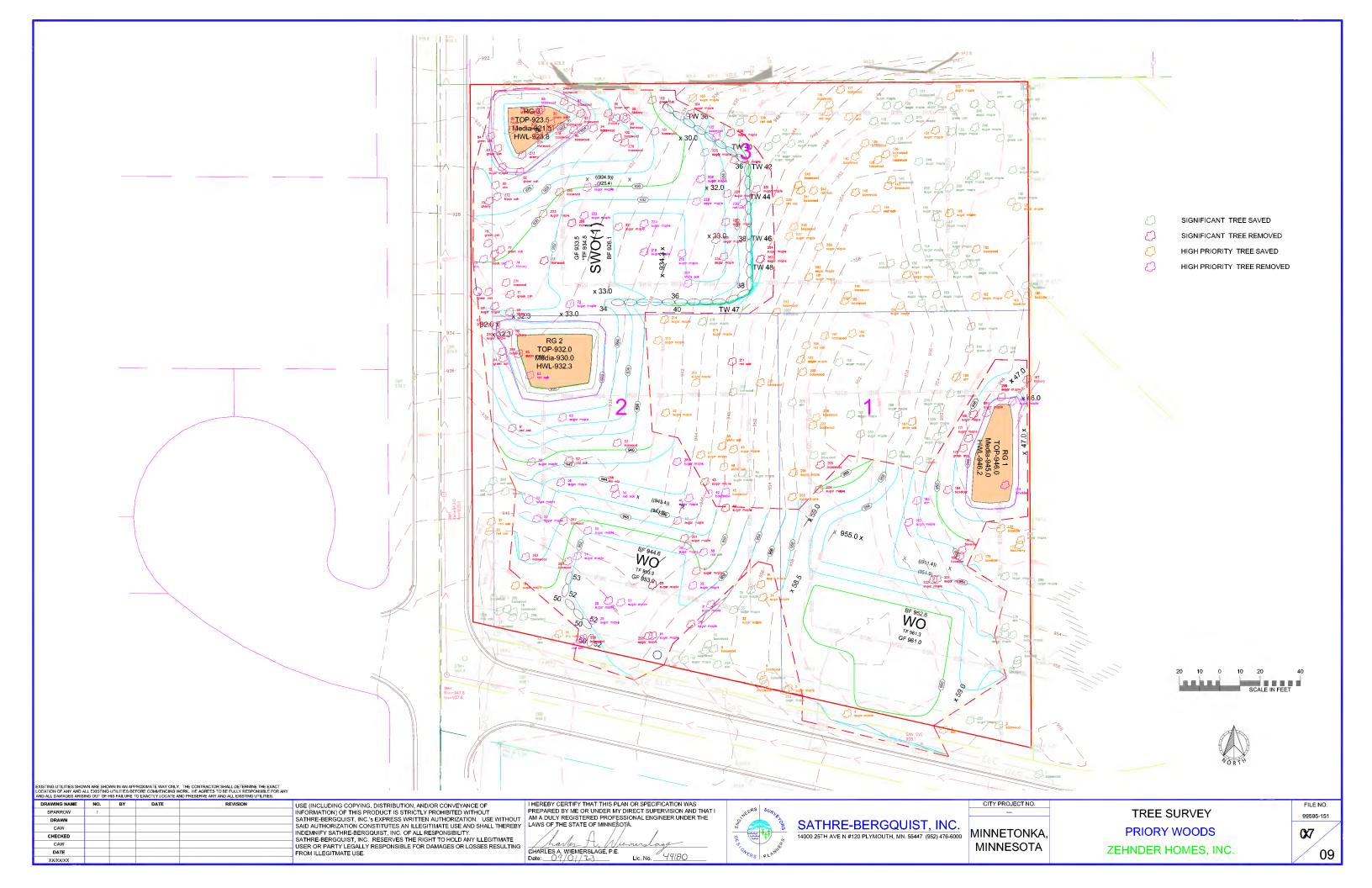
DRAWING NAME	NO.	D1	DATE	KEVIOION	USE (INCLUDING COPYING, DISTRIBUTION, AND/OR CONVEYANCE OF
SPARROW	1				INFORMATION) OF THIS PRODUCT IS STRICTLY PROHIBITED WITHOUT
DRAWN					SATHRE-BERGQUIST, INC.'s EXPRESS WRITTEN AUTHORIZATION. USE WITHOUT
CAW					SAID AUTHORIZATION CONSTITUTES AN ILLEGITIMATE USE AND SHALL THEREBY
CHECKED					INDEMNIFY SATHRE-BERGQUIST, INC. OF ALL RESPONSIBILITY. SATHRE-BERGQUIST, INC. RESERVES THE RIGHT TO HOLD ANY ILLEGITIMATE
CAW					USER OR PARTY LEGALLY RESPONSIBLE FOR DAMAGES OR LOSSES RESULTING
DATE					FROM ILLEGITMATE USE.
YY/YY/YY]

ICE OF THOUT

N. USE WITHOUT
D SHALL THEREBY

I HEREBY CERTIFY THAT THIS PLAN OR SPECIFICATION WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

AWS OF THE STATE OF MINNEDOTA.	
Charles A. Vienerslags	
HARLES A. WIEMERSLAGE, P.E.	
late: <u>09/01/23</u> Lic. No. <u>49/80</u>	_



CITY PROJECT NO.
MINNETONKA.

MINNESOTA

AMENDED SOILS PLAN PRIORY WOODS ZEHNDER HOMES, INC. FILE NO. 99595-151

Tree #	Species	Notes	DSH	HP Save	HP Remove	Sig Save	Sig Remov
1	basswood		29				
2	basswood	Cavity	27	1			
3	elm		24	1			
4	sugar maple		31	1			
5	sugar maple		12	1			
6	basswood		20	1			
7	basswood		6			1	
8	basswood		13	1			
9	basswood		19	1			
10	basswood		7.5			1	
11	basswood .		7.5			1	
12	sugar maple		18				
13	red oak	No top	18				
14	sugar maple		14		1		
15	red oak	-	24		1		
16	red oak	-	7	1		_	
17	basswood					1	
18	basswood	-	8			1	
19	sugar maple		22	1			
20	red oak	-	16	1		-	
21	red oak	-	25	1		-	
22	sugar maple	 	15		1		
23	sugar maple		16		1		
24	sugar maple		14		1		
25	sugar maple		13		1		
26	sugar maple		14		1		
27	sugar maple		19		1		
28	sugar maple		15		1		
29	sugar maple		7				
30	sugar maple		13		1		
31	sugar maple		12		1		
32	sugar maple		14	1			
33	sugar maple		7			1	
34	sugar maple		13	1			
35	sugar maple		7			1	
36	sugar maple		14	1			
37	sugar maple		9				
38	red oak		20		1		
39	sugar maple		15.5		1		
40	sugar maple		9				
41	sugar maple	Ì	16		1		
42	basswood		20		1		
43	sugar maple		9				
44	sugar maple		9				
45	basswood		17	1			
46	sugar maple		9			1	
47	sugar maple		8			1	
48	white oak		11	1			
49	sugar maple		16	1			
50	white oak		21	1			
51	sugar maple		11	1			
52	sugar maple		20	1			
53	ironwood		6				
54	red oak		11		1		
55	sugar maple		12.5		1		
56	sugar maple		15		1		
57	red oak		8		1		
58	sugar maple		12		1		
59	ironwood		6			1	
60	red oak		7			1	
61	red oak		9			<u> </u>	
62	sugar maple		29		1		
63	red oak	<u> </u>	29		1		
64	green ash	Not Sig	6		1		
65	_	NOUSIE	6				
66	sugar maple hickory		7				
		Not Sig	9				
67	green ash	NOT SIS	7				
68	hickory		7				
69	sugar maple	Not St	11				
70	green ash	Not Sig	10				
71	green ash	Not Sig					
72	sugar maple		24	-	1		
73	ironwood	<u> </u>	6				
74	hickory	-	10		1		
75	elm		17		1		
76	black ash	Not Sig	8				
77	green ash	Not Sig	10				
78	green ash	Not Sig	7				
	cherry		7				
79			8		1	I	
80	elm	SOXIMATE WAY	ONLY THE CO.	TRACTOR CUAL	DETERMINE THE FV	ACT	
80	ETM RE SHOWN IN AN APPR ISTING UTILITIES BEF UT OF HIS FAILURE TO	ROXIMATE WAY	ONLY, THE CON	TRACTOR SHALI	DETERMINE THE EX-	ACT OR ANY	

81 82 83	-	Notes	DSH	HP Save	HP Remove	Sig Save	Sig Kemov
	sugar maple		8				
83	green ash	Dead	17				
	green ash	Not Sig	7				
84	green ash	Not Sig	8				
85	hickory		9				
		NI C'.	11				
86	green ash	Not Sig					
87	sugar maple		8			1	
88	basswood		11		1		
89	green ash	Not Sig	6				
90	green ash	Not Sig	8				
91	-	itot oig	9				
	basswood						
92	basswood		8				
93	basswood		8				
94	basswood		7				
95	basswood		8				
96	green ash	Not Sig	8				
97	hickory		6				
98	hickory		8				
99	ironwood		6				
						-	
100	basswood		9				
101	basswood		9				
102	green ash	Not Sig	7				
		sig	15				
103	sugar maple			1			
104	sugar maple	Canker	10				
105	basswood		10		1		
106	sugar maple		7				
			7				
107	sugar maple					1	-
108	red oak		20	1			
109	red oak		17	1			
110	sugar maple		6				
			7				
111	sugar maple					1	
112	sugar maple		9			1	
113	sugar maple		9			1	
114	red oak		19			_	
				1			
115	elm		14	1			
116	basswood		13	1			
117	basswood		17	1			
			7				
118	sugar maple					1	
119	sugar maple		7			1	
120	sugar maple		7			1	
121	basswood	Dead	18				
		Dead	10				
122	sugar maple			1			
123	green ash	Not Sig	11				
124	green ash	Not Sig	14				
125	green ash	Not Sig	14				
		_	15				
126	green ash	Not Sig					
127	green ash	Dead	10				
128	sugar maple		9			1	
129	sugar maple		11	1			
			9	-		_	
130	sugar maple					1	
131	sugar maple	split	11				
132	sugar maple		9			1	
133	sugar maple		8			1	
						<u> </u>	
134	sugar maple		12	1			
135	basswood	Rotten	25				
136	basswood		13	1			
137	basswood		17	1			
138	basswood		16	1			
139	basswood		24	1			
140	basswood		11	1			
141	basswood		11	1			
	1						
142	basswood		21	1			
143	basswood		18	1			
144	red oak		26	1			
			9				-
145	basswood .					1	
146	sugar maple		8			1	
147	sugar maple	7	9			1	
148	sugar maple		12	1			
			9	1			<u> </u>
149	sugar maple			-		1	-
150	basswood		17	1			
151	green ash	Not Sig	18				
152			6			- 4	
	sugar maple	\vdash				1	
153	sugar maple		6			1	
	sugar maple		7			1	
154	hickory		8			1	
155	sugar maple		8			1	
155 156			11	1			
155	sugar maple						
155 156 157			10	1			
155 156 157 158	sugar maple			1			
155 156 157 158 159	sugar maple sugar maple		7	1		1	
155 156 157 158	sugar maple			1		1	

Tree #	Species	Notes	DSH	HP Save	HP Remove	Sig Save	Sig Remo
162	sugar maple		10	1			
163	boxelder		12	1			
164	boxelder		7			1	
165	boxelder		17	1			
166	elm		7			1	
			9			1	
167	hickory						
168	sugar maple		13		1		
169	sugar maple		9				
170	green ash	EAB	15				
171	sugar maple		7				
172			21	1			
	boxelder	_		1			
173	hackberry		25	1			
174	boxelder		12		1		
175	sugar maple		6			1	
176	elm		9			1	
177	boxelder		6			1	
		\vdash					
178	boxelder		8			1	
179	boxelder		10	1			
180	boxelder		8				
181	boxelder		8				
182	sugar maple		10		1		
			28				
183	elm				1		
184	boxelder		8				
185	sugar maple		8			1	
186	hickory		9			1	
187	white oak		33	1			
		 	9	1			
188	sugar maple			-		1	
189	elm	\vdash	14	1			
190	green ash	Not Sig	17.5				
191	sugar maple		7			1	
192	sugar maple		8			1	
193	sugar maple		6			1	
		\vdash				1	
194	elm	\vdash	17	1			
195	basswood		12	1			
196	basswood		25	1			
197	basswood		18	1			
198	red oak		22	1			
	+	 	15				
199	sugar maple			1			
200	basswood		13	1			
201	sugar maple		8				
202	sugar maple		9				
203	sugar maple		11	1			
203		Damazz	18	-			
	sugar maple			-	-		
205	basswood	Damage	14	ļ	-		
206	sugar maple	\vdash	20	1	ļ		
207	basswood	1	13	1			
208	basswood		20	1			
209	elm		8			1	
	+	 	20	 		1	
210	basswood			1			
211	red oak	Dead	22				
212	sugar maple		14	1			
213	sugar maple		20	1			
214	sugar maple		17	1			
			17	1			
215	sugar maple						
216	sugar maple		9			1	
217	white oak	[13	L	1		
218	sugar maple		17		1		
219	sugar maple		19		1		
220	sugar maple		16		1		
				-	1		
221	sugar maple	$\overline{}$	9		-		
222	sugar maple		17		1		
223	sugar maple	dead	29				
224	sugar maple		24		1		
225	sugar maple		9				
			16	 	_		
226	sugar maple	$\overline{}$			1		
227	sugar maple		12		1		
228	sugar maple	T	12		1		
229	sugar maple		9				
230	red oak		21		1		
		 	7		 		
231	sugar maple						
232	sugar maple	\vdash	6			1	
233	ironwood		6			1	
234	sugar maple		8				
235	sugar maple		7				
236			9				
	sugar maple						
237	sugar maple		16	1			
238	basswood		10	1			
239	red oak		19	1			
240	basswood		14				
241	basswood		16	1			
	red oak	\vdash	20				
242	urad oak		20	1 1			

1	Γree#	Species	Notes	DSH	HP Save	HP Remove	Sig Save	Sig Remove	
	243	sugar maple		5			1		T
	244	sugar maple		6			1]
	245	sugar maple		6			1]
	246	sugar maple		6			1		
	247	green ash	Not Sig	6					
	248	sugar maple		5			1		1
	249	sugar maple		6			1		
	250	sugar maple		5			1		1
	251	sugar maple		5			1		1
	252	sugar maple		7			1		1
	253	sugar maple		5			1		1
	254	elm		6				1	1
	255	sugar maple		4				1	-1
	256	basswood		5				1	-
	257	elm		6				1	1
							1		ł
	258	basswood		5			1		1
	259	red oak		6			1		4
	260	basswood		6			1		1
	261	basswood		6			1		
	262	basswood		6				1	
	263	ironwood		6				1	-
	264	sugar maple		4	-			1	1
	265	sugar maple		12		1		_	1
	266	red oak		5				1	1
	267	ironwood		5					1
				4				1	1
	268	red oak		5.5			1		1
_	269	hickory						1	1
	270	sugar maple		6				1	-
	271	ironwood		6				1	1
	272	black ash	Not Sig	6					1
	273	cherry		6				1	
	274	ironwood		4				1	1
	275	hickory		5				1	1
	276	basswood		4				1	
_	277	basswood		7				1	
	278	basswood		4				1	4
_				5				1	ł
	279	sugar maple		22	_		1		ł
	280	sugar maple							ł
	281	sugar maple		11	1				1
	282	sugar maple		13	1				1
	283	sugar maple		9				1	1
	284	sugar maple		7				1	
	285	ironwood		6				1	
	286	ironwood		6				1	
	287	sugar maple		6				1	1
	288	sugar maple		5			1		1
	289	sugar maple		5			1		1
	290			6					1
_		sugar maple	Causis	10	-		1		ł
	291	basswood	Cavity						1
	292	basswood		9			1		1
	293	basswood		21	1				1
	294	hickory		7			1		1
	295	sugar maple	Dead	6					
	296	sugar maple		6			1		
	297	sugar maple		6			1		1
	298	sugar maple		6				1	1
	299	sugar maple		6			1	-	1
Total Trees Trees <u>NOT</u> Regulated by Ordinange Trees Regulated by Ordinance					77 299 38 261		76	67	
∃ig	th Priorit	y Trees Allowable Re	emovals (35%)	118 41		Removed	41	
Sig	nifigant	Trees Allowable Re	emovals (50%)	143 72		Removed	67	

EXISTING LOCATION AND ALL D DRAWI

XX/XX/XX

USE (INCLUDING COPYING, DISTRIBUTION, AND/OR CONVEYANCE OF INFORMATION) OF THIS PRODUCT IS STRICTLY PROHIBITED WITHOUT SATHRE-BERGGUIST, INC.'S EXPRESS WRITTEN AUTHORIZATION. USE WITHOUT SAID AUTHORIZATION CONSTITUTES AN ILLEGITIMATE USE AND SHALL THEREBY INDEMNIFY SATHRE-BERGGUIST, INC. OF ALL RESPONSIBILITY.

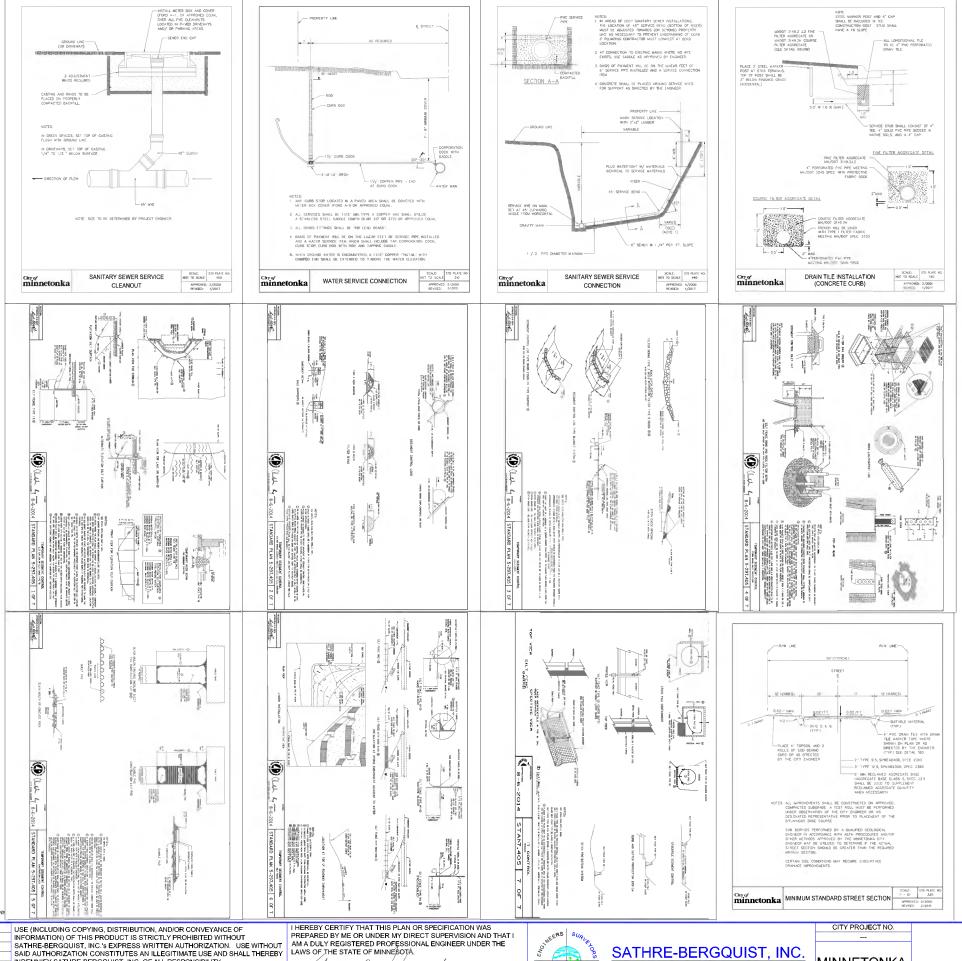
SATHRE-BERGGUIST, INC. RESERVES THE RIGHT TO HOLD ANY ILLEGITIMATE USER OR PARTY LEGALLY RESPONSIBLE FOR DAMAGES OR LOSSES RESULTING FROM ILLEGITMATE USE.

IMPROVED THAT THIS PLAN OR SPECIFICATION WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

CHARTLES A WIEMERS LAGE, P.E.
Date: 09/0/1/23 Lic. No. 49/80 CAW CHECKED DATE

havles A. Vie CHARLES A. WIEMERSLAGE, P.E. Date: 09/01/23

Lic. No. 49/80


SATHRE-BERGQUIST, INC.
14000 25TH AVE N #120 PLYMOUTH, MN. 55447 (952) 476-6000 MINNETONKA,

ROJECT NO. MINNESOTA

TREE SURVEY **PRIORY WOODS** ZEHNDER HOMES, INC.

FILE NO. 99595-151

DRAWN CAW CHECKED

CAW

DATE

USE (INCLUDING COPYING, DISTRIBUTION, AND/OR CONVEYANCE OF INFORMATION) OF THIS PRODUCT IS STRICTLY PROHIBITED WITHOUT SATHRE-BERGGUIST, INC.'S EXPRESS WRITTEN AUTHORIZATION. USE WITHOUT SAID AUTHORIZATION CONSTITUTES AN ILLEGITIMATE USE AND SHALL THEREBY INDEMNIFY SATHRE-BERGGUIST, INC. OF ALL RESPONSIBILITY. SATHRE-BERGGUIST, INC. RESERVES THE RIGHT TO HOLD ANY ILLEGITIMATE USER OR PARTY LEGALLY RESPONSIBLE FOR DAMAGES OR LOSSES RESULTING FROM ILLEGITIMATE USE.

14000 25TH AVE N #120 PLYMOUTH, MN. 55447 (952) 476-600

	CITY PROJECT NO.
	MINNETONKA,
00	· ·
	MINNESOTA

CITY DETAILS **PRIORY WOODS** ZEHNDER HOMES, INC. FILE NO. 99595-151

Existing

To East

To North

To Street

Routing Diagram for Priory - Haugo Soils
Prepared by Sathre-Bergquist, Inc, Printed 8/31/2023
HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Printed 8/31/2023

Priory - Haugo Soils
Prepared by Sathre-Bergquist, Inc
HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 2

Rainfall Events Listing (selected events)

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	MSE 24-hr	3	Default	24.00	1	2.50	2
2	2-Year	MSE 24-hr	3	Default	24.00	1	2.87	2
3	10-Year	MSE 24-hr	3	Default	24.00	1	4.27	2
4	10day-snow	Spillway 1-day 10-day		Default	240.00	1	7.20	4
5	100-Year	MSE 24-hr	3	Default	24.00	1	7.41	2

Priory - Haugo Soils
Prepared by Sathre-Bergquist, Inc
HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Printed 8/31/2023 Page 3

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.043	98	Unconnected roofs, HSG C (1S, 3S)
1.797	76	Woods/grass comb., Fair, HSG C (1S, 2S, 3S)
1.840	77	TOTAL AREA

Priory - Haugo Soils
Prepared by Sathre-Bergquist, Inc
HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Printed 8/31/2023

Page 4

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
1.840	HSG C	1S, 2S, 3S
0.000	HSG D	
0.000	Other	
1.840		TOTAL AREA

Priory - Haugo Soils
Prepared by Sathre-Bergquist, Inc
HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Printed 8/31/2023

Page 5

Ground Covers (selected nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.000	0.043	0.000	0.000	0.043	Unconnected roofs	1S, 3S
0.000	0.000	1.797	0.000	0.000	1.797	Woods/grass comb., Fair	1S, 2S,
							3S
0.000	0.000	1.840	0.000	0.000	1.840	TOTAL AREA	

Existing

Priory - Haugo Soils

MSE 24-hr 3 1-Year Rainfall=2.50"

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment1S: To East Runoff Area=23,590 sf 5.45% Impervious Runoff Depth=0.78"

Flow Length=80' Slope=0.2000'/' Tc=7.5 min CN=WQ Runoff=0.69 cfs 0.035 af

Subcatchment2S: To StreetRunoff Area=2,805 sf 0.00% Impervious Runoff Depth=0.69"

Flow Length=32' Slope=0.1250 '/' Tc=2.9 min CN=76 Runoff=0.09 cfs 0.004 af

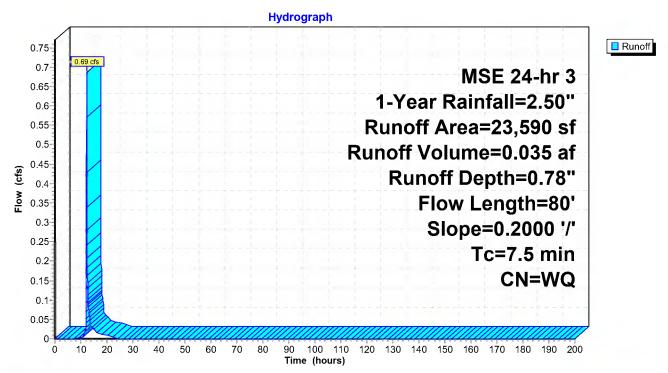
Subcatchment3S: To NorthRunoff Area=53,773 sf 1.09% Impervious Runoff Depth=0.71"

Flow Length=380' Tc=13.5 min CN=WQ Runoff=1.11 cfs 0.073 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.112 af Average Runoff Depth = 0.73" 97.67% Pervious = 1.797 ac 2.33% Impervious = 0.043 ac

Page 7

Summary for Subcatchment 1S: To East


Runoff = 0.69 cfs @ 12.16 hrs, Volume= 0.035 af, Depth= 0.78" Routed to nonexistent node 10P

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 1-Year Rainfall=2.50"

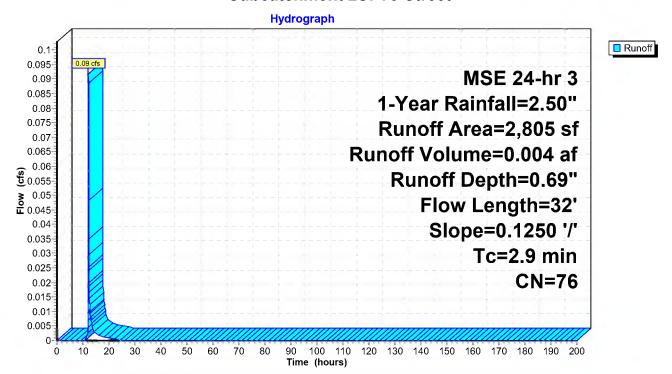
	Α	rea (sf)	CN I	Description						
		22,305	76 '	Noods/grass comb., Fair, HSG C						
		1,285	98	Unconnected roofs, HSG C						
		23,590	,	Veighted Average						
		22,305	76	04.55% Pervious Area						
		1,285	98	5.45% Impervious Area						
		1,285		100.00% Unconnected						
	Тс	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	7.5	80	0.2000	0.18		Sheet Flow.				

Woods: Light underbrush n= 0.400 P2= 2.88"

Subcatchment 1S: To East

Page 8

Summary for Subcatchment 2S: To Street


[49] Hint: Tc<2dt may require smaller dt

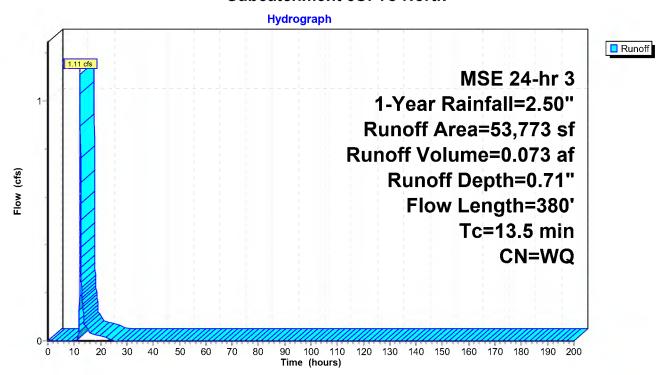
Runoff = 0.09 cfs @ 12.10 hrs, Volume= 0.004 af, Depth= 0.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 1-Year Rainfall=2.50"

A	rea (sf)	CN	Description							
	2,805	76	Woods/gras	Voods/grass comb., Fair, HSG C						
	2,805	76	6 100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description					
2.9	32	0.125	0 0.18		Sheet Flow, Grass: Dense	n= 0.240	P2= 2.88"			

Subcatchment 2S: To Street

Page 9


Summary for Subcatchment 3S: To North

Runoff = 1.11 cfs @ 12.23 hrs, Volume= 0.073 af, Depth= 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 1-Year Rainfall=2.50"

	Α	rea (sf)	CN	N Description								
		53,189	76	Woods/gras	ss comb., F	air, HSG C						
		584	98	B Unconnected roofs, HSG C								
		53,773	,	Weighted A	verage							
		53,189	76	98.91% Pe	rvious Area							
584 98 1.09% Impervious Area						a						
		584		100.00% U	nconnected	i						
	Тс	Length	Slope		Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	11.1	100	0.1200	0.15		Sheet Flow,						
						Woods: Light underbrush n= 0.400 P2= 2.88"						
	2.4	280	0.1500	1.94		Shallow Concentrated Flow,						
_						Woodland Kv= 5.0 fps						
	13.5	380	Total									

Subcatchment 3S: To North

Existing

Priory - Haugo Soils

MSE 24-hr 3 2-Year Rainfall=2.87"

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 10

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment1S: To East Runoff Area=23,590 sf 5.45% Impervious Runoff Depth=1.02"

Flow Length=80' Slope=0.2000 '/' Tc=7.5 min CN=WQ Runoff=0.92 cfs 0.046 af

Subcatchment2S: To Street Runoff Area=2,805 sf 0.00% Impervious Runoff Depth=0.93"

Flow Length=32' Slope=0.1250 '/' $Tc=2.9 \ min$ CN=76 Runoff=0.12 cfs 0.005 af

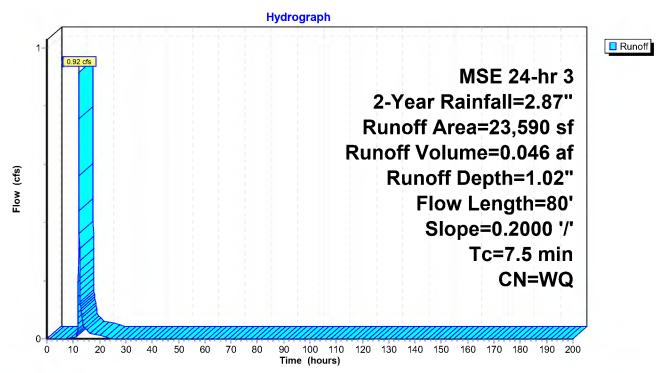
Subcatchment3S: To North Runoff Area=53,773 sf 1.09% Impervious Runoff Depth=0.95"

Flow Length=380' Tc=13.5 min CN=WQ Runoff=1.52 cfs 0.097 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.149 af Average Runoff Depth = 0.97" 97.67% Pervious = 1.797 ac 2.33% Impervious = 0.043 ac

Page 11

Summary for Subcatchment 1S: To East


Runoff = 0.92 cfs @ 12.15 hrs, Volume= 0.046 af, Depth= 1.02" Routed to nonexistent node 10P

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 2-Year Rainfall=2.87"

 Α	rea (sf)	CN I	Description						
	22,305	76 \	Noods/grass comb., Fair, HSG C						
	1,285	98 I	Unconnected roofs, HSG C						
	23,590	,	Veighted Average						
	22,305	76	04.55% Pervious Area						
	1,285	98	5.45% Impervious Area						
	1,285	•	100.00% Unconnected						
Тс	Length	Slope	•	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
7.5	80	0.2000	0.18		Sheet Flow.				

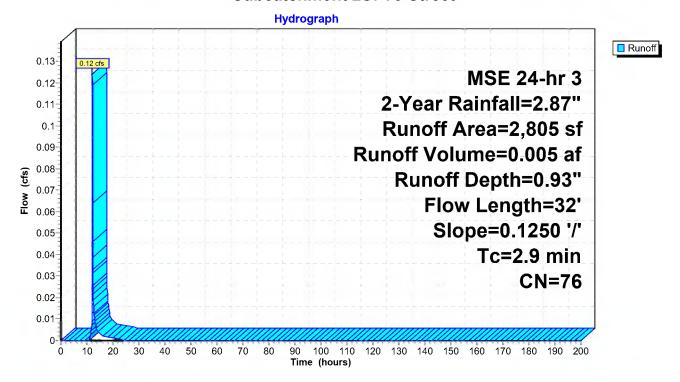
Woods: Light underbrush n= 0.400 P2= 2.88"

Subcatchment 1S: To East

Page 12

Summary for Subcatchment 2S: To Street

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.12 cfs @ 12.10 hrs, Volume=

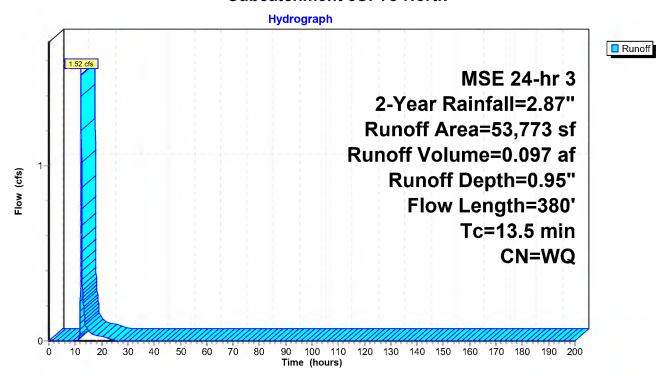
0.005 af, Depth= 0.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 2-Year Rainfall=2.87"

A	rea (sf)	CN	Description							
	2,805	76	Woods/gras	Voods/grass comb., Fair, HSG C						
	2,805	76	6 100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description					
2.9	32	0.125	0 0.18		Sheet Flow, Grass: Dense	n= 0.240	P2= 2.88"			

Subcatchment 2S: To Street

Page 13


Summary for Subcatchment 3S: To North

Runoff = 1.52 cfs @ 12.23 hrs, Volume= 0.097 af, Depth= 0.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 2-Year Rainfall=2.87"

_	Α	rea (sf)	CN [Description							
		53,189	76 \	Noods/gras	ss comb., F	air, HSG C					
_		584	98 l	Jnconnecte	ed roofs, H	SG C					
		53,773	1	Neighted A	verage						
		53,189	76 9	98.91% Pei	rvious Area						
584 98 1.09% Impervious Area						a					
		584	•	100.00% U	nconnected	i					
	Тс	Length	Slope	•	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	11.1	100	0.1200	0.15		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 2.88"					
	2.4	280	0.1500	1.94		Shallow Concentrated Flow,					
_						Woodland Kv= 5.0 fps					
	13.5	380	Total								

Subcatchment 3S: To North

Existing

Priory - Haugo Soils MSE 24-hr 3 10-Year Rainfall=4.27"

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 14

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment1S: To East Runoff Area=23,590 sf 5.45% Impervious Runoff Depth=2.06"

Flow Length=80' Slope=0.2000'/' Tc=7.5 min CN=WQ Runoff=1.89 cfs 0.093 af

Subcatchment2S: To Street Runoff Area=2,805 sf 0.00% Impervious Runoff Depth=1.95"

Flow Length=32' Slope=0.1250 '/' Tc=2.9 min CN=76 Runoff=0.25 cfs 0.010 af

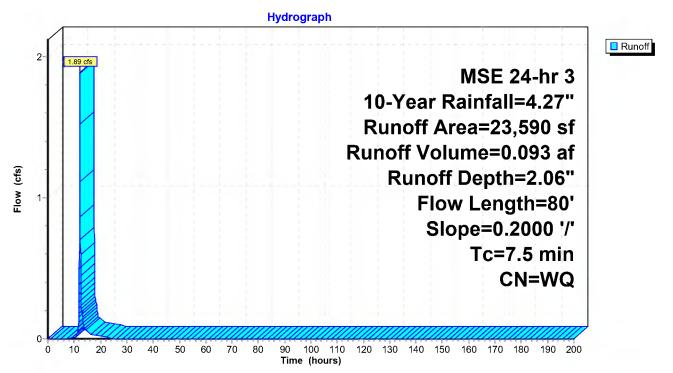
Subcatchment3S: To NorthRunoff Area=53,773 sf 1.09% Impervious Runoff Depth=1.97"

Flow Length=380' Tc=13.5 min CN=WQ Runoff=3.27 cfs 0.203 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.306 af Average Runoff Depth = 2.00" 97.67% Pervious = 1.797 ac 2.33% Impervious = 0.043 ac

Page 15

Summary for Subcatchment 1S: To East


Runoff = 1.89 cfs @ 12.15 hrs, Volume= 0.093 af, Depth= 2.06" Routed to nonexistent node 10P

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 10-Year Rainfall=4.27"

	Α	rea (sf)	CN I	Description					
		22,305	76 '	Woods/grass comb., Fair, HSG C					
		1,285	98	Unconnected roofs, HSG C					
		23,590	,	Weighted Average					
		22,305	76	94.55% Pervious Area					
		1,285	98	5.45% Impervious Area					
		1,285		100.00% Unconnected					
	Тс	Length	Slope	•	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	7.5	80	0.2000	0.18		Sheet Flow.			

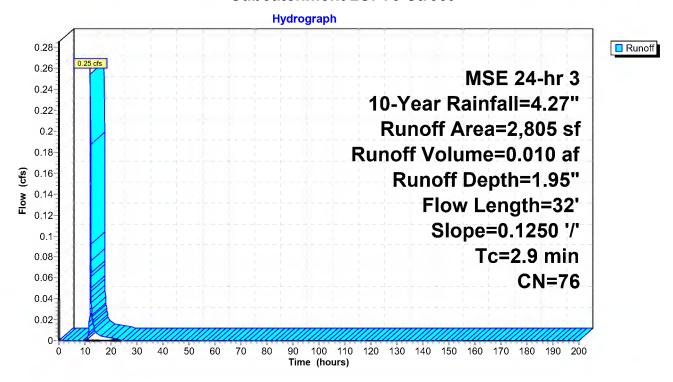
Woods: Light underbrush n= 0.400 P2= 2.88"

Subcatchment 1S: To East

Page 16

Summary for Subcatchment 2S: To Street

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.25 cfs @ 12.10 hrs, Volume=

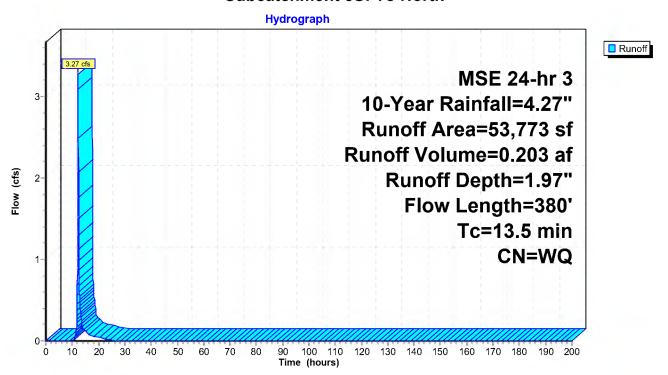
0.010 af, Depth= 1.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 10-Year Rainfall=4.27"

 Aı	rea (sf)	CN	Description					
	2,805	76	Woods/grass comb., Fair, HSG C					
	2,805	76	100.00% Pervious Area					
	Length	Slope	•	Capacity	Description			
 (min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
2.9	32	0.1250	0.18		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 2.88"	

Subcatchment 2S: To Street

Page 17


Summary for Subcatchment 3S: To North

Runoff = 3.27 cfs @ 12.22 hrs, Volume= 0.203 af, Depth= 1.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 10-Year Rainfall=4.27"

	Α	rea (sf)	CN Description					
		53,189	76 \	Noods/gras	ss comb., F	air, HSG C		
		584	98 l	Jnconnecte	ed roofs, H	SG C		
		53,773	1	Neighted A	verage			
	53,189 76 98.91% Pervious Area							
	584 98 1.09% Impervious Area					a		
	584 100.00% Unconnected					i		
	Тс	Length	Slope	•	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	11.1	100	0.1200	0.15		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 2.88"		
	2.4	280	0.1500	1.94		Shallow Concentrated Flow,		
_						Woodland Kv= 5.0 fps		
	13.5	380	Total					

Subcatchment 3S: To North

Existing

Priory - Haugo Soils

Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 18

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment1S: To East

Runoff Area=23,590 sf 5.45% Impervious Runoff Depth>6.48"

Flow Length=80' Slope=0.2000 '/' Tc=7.5 min AMC UI Adjusted CN=WQ Runoff=0.26 cfs 0.292 af

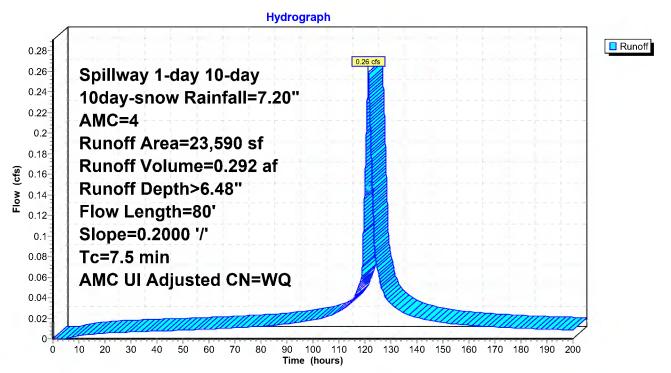
Subcatchment2S: To StreetRunoff Area=2,805 sf 0.00% Impervious Runoff Depth>6.48"
Flow Length=32' Slope=0.1250 '/' Tc=2.9 min AMC Adjusted CN=98 Runoff=0.03 cfs 0.035 af

Subcatchment3S: To NorthRunoff Area=53,773 sf 1.09% Impervious Runoff Depth>6.47"
Flow Length=380' Tc=13.5 min AMC UI Adjusted CN=WQ Runoff=0.59 cfs 0.666 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.993 af Average Runoff Depth = 6.48" 97.67% Pervious = 1.797 ac 2.33% Impervious = 0.043 ac

Page 19

Summary for Subcatchment 1S: To East


Runoff 0.26 cfs @ 121.32 hrs, Volume= 0.292 af, Depth> 6.48" Routed to nonexistent node 10P

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

	Area (sf)	CN	Adj De	Description				
	22,305	76	98 W	Woods/grass comb., Fair, HSG C				
	1,285	98	98 Ur	Unconnected roofs, HSG C				
	23,590		W	Weighted Average				
	22,305	76	98 94	94.55% Pervious Area, AMC Adjusted				
	1,285	98	98 5.4	5.45% Impervious Area, AMC Adjusted				
	1,285		10	0.00% Uncor	nnected			
Tc	Length	Slope		• . •	Description			
(min)	(feet)	(ft/ft)	(ft/sec	;) (cfs)				
7.5	80	0.2000	0.1	8	Sheet Flow,			

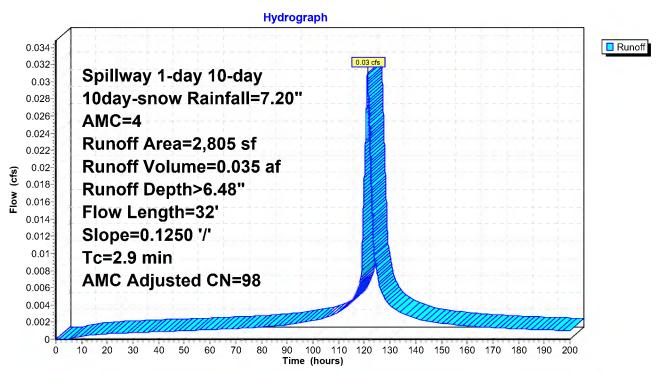
Woods: Light underbrush n= 0.400 P2= 2.88"

Subcatchment 1S: To East

Page 20

Summary for Subcatchment 2S: To Street

[49] Hint: Tc<2dt may require smaller dt

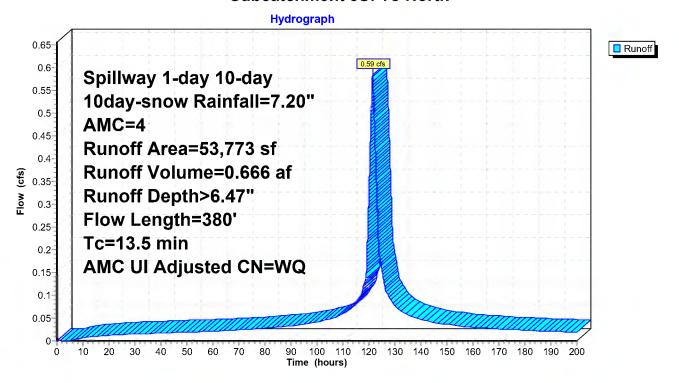

Runoff = 0.03 cfs @ 121.26 hrs, Volume=

0.035 af, Depth> 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

A	rea (sf)	CN	Adj Des	scription		
	2,805	76	98 Wo	Woods/grass comb., Fair, HSG C		
	2,805		We	Weighted Average		
	2,805	76	98 100	.00% Pervio	ous Area, AMC Adjusted	
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
2.9	32	0.1250	0.18	1	Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.88"	

Subcatchment 2S: To Street


Summary for Subcatchment 3S: To North

Runoff = 0.59 cfs @ 121.41 hrs, Volume= 0.666 af, Depth> 6.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

_	Α	rea (sf)	CN .	Adj Des	cription		
53,189 76 98 Woods/grass con					ds/grass co	omb., Fair, HSG C	
584 98 98 Unconnected ro				98 Unc	onnected re	oofs, HSG C	
		53,773		Wei	ghted Avera	age	
	53,189 76 98		98 98.9	98.91% Pervious Area, AMC Adjusted			
	584 98 98			98 1.09	1.09% Impervious Area, AMC Adjusted		
584 100.0			100.	00% Uncor	nnected		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	11.1	100	0.1200	0.15		Sheet Flow,	
_	2.4	280	0.1500	1.94		Woods: Light underbrush n= 0.400 P2= 2.88" Shallow Concentrated Flow, Woodland Kv= 5.0 fps	
	13.5	380	Total				

Subcatchment 3S: To North

Existing

Priory - Haugo Soils

MSE 24-hr 3 100-Year Rainfall=7.41"

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 22

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment1S: To East Runoff Area=23,590 sf 5.45% Impervious Runoff Depth=4.76"

Flow Length=80' Slope=0.2000'/' Tc=7.5 min CN=WQ Runoff=4.31 cfs $\,$ 0.215 af

Subcatchment2S: To Street Runoff Area=2,805 sf 0.00% Impervious Runoff Depth=4.62"

Flow Length=32' Slope=0.1250 '/' Tc=2.9 min CN=76 Runoff=0.59 cfs 0.025 af

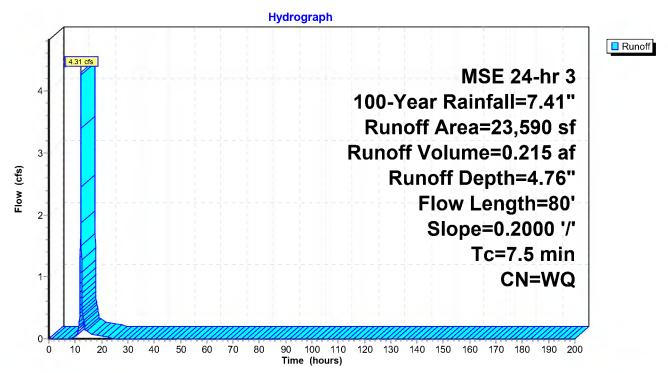
Subcatchment3S: To NorthRunoff Area=53,773 sf 1.09% Impervious Runoff Depth=4.65"

Flow Length=380' Tc=13.5 min CN=WQ Runoff=7.71 cfs 0.479 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.718 af Average Runoff Depth = 4.68" 97.67% Pervious = 1.797 ac 2.33% Impervious = 0.043 ac

Page 23

Summary for Subcatchment 1S: To East


Runoff = 4.31 cfs @ 12.15 hrs, Volume= 0.215 af, Depth= 4.76" Routed to nonexistent node 10P

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 100-Year Rainfall=7.41"

	Area (sf)	CN I	Description			
	22,305	76 \	Noods/gras	ss comb., F	air, HSG C	
	1,285	98 l	Jnconnecte	ed roofs, H	SG C	
	23,590	1	Neighted A	verage		
	22,305	76	94.55% Pervious Area			
	1,285	98	5.45% Impervious Area			
	1,285	•	100.00% Unconnected			
Tc		Slope	•	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
7.5	80	0.2000	0.18		Sheet Flow,	

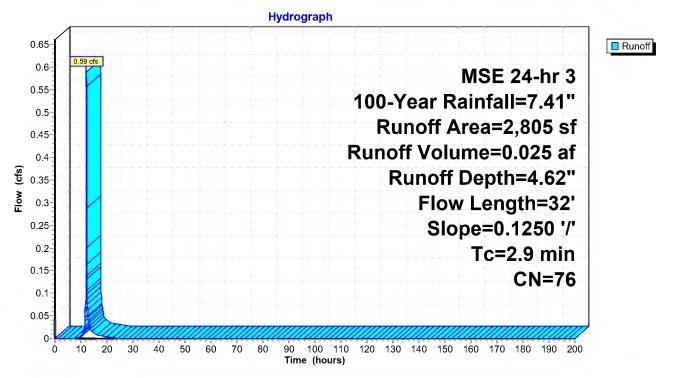
Woods: Light underbrush n= 0.400 P2= 2.88"

Subcatchment 1S: To East

Page 24

Summary for Subcatchment 2S: To Street

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.59 cfs @ 12.10 hrs, Volume=

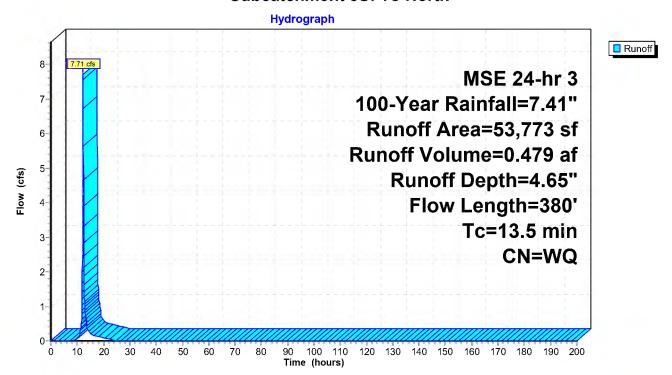
0.025 af, Depth= 4.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 100-Year Rainfall=7.41"

A	rea (sf)	CN	Description					
	2,805	76	Woods/gras	Woods/grass comb., Fair, HSG C				
•	2,805	76	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft	-	Capacity (cfs)	Description			
2.9	32	0.125	0 0.18		Sheet Flow, Grass: Dense	n= 0.240	P2= 2.88"	

Subcatchment 2S: To Street

Page 25


Summary for Subcatchment 3S: To North

Runoff = 7.71 cfs @ 12.22 hrs, Volume= 0.479 af, Depth= 4.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 100-Year Rainfall=7.41"

Area	(sf)	CN E	escription		
53,	189	76 V	Voods/gras	ss comb., F	air, HSG C
	584	98 L	<u> Inconnecte</u>	ed roofs, H	SG C
53,	773	٧	Veighted A	verage	
53,	189	76 9	8.91% Pei	vious Area	
	584	98 1	.09% Impe	ervious Are	a
	584	1	00.00% U	nconnected	i
	ength	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.1	100	0.1200	0.15		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.88"
2.4	280	0.1500	1.94		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
13.5	380	Total			

Subcatchment 3S: To North

P8 Urban Ca	tchment Model, Version 3.5		Run Date	08/31/23	
Case	Priory Woods Existing.p8c	FirstDate	01/01/12	Precip(in)	333.8
Title	Priory Woods	LastDate	01/01/22	Rain(in)	296.33
PrecFile	MSP49-20220228.pcp	Events	778	Snow(in)	37.42
PartFile	nurp50.p8p	TotalHrs	86976	TotalYrs	9.92

Case Title	Priory Woods			
Case Data File	Priory Woods I	Existing.p8c		
Path	H:\P8\			
Case Notes:	Onsite model r	epresents poll	utant loading fror	n onsite only
Storm Data File	MSP49-20220	228.pcp		
Particle File	nurp50.p8p			
Air Temp File File	MSP49-20220	228.tem		
Time Steps Per Hour	12			
Minimum Inter-Event Time (hrs)	10			
Maximum Continuity Error %	2			
Rainfall Breakpoint (inches)	0.8			
Precipitation Scale Factor	1			
Air Temp Offset (deg-F)	0			
Loops Thru Storm File	1			
Simulation Dates				
Start	40544			
Keep	40909			
Stop	44562			
Max Snowfall Temperature (deg-	f) 32			
SnowMelt Temperature (deg-f)	32			
Snowmelt Coef (in/degF-Day)	0.06			
Soil Freeze Temp (deg-F)	32			
Snowmelt Abstraction Factor	1			
Evapo-Trans. Calibration Factor	1			
Growing Season Start Month	5			
Growing Season End Month	10			
5-Day Antecedent Rainfall + Run	off (inches)			
CN Antecedent Moisture Condition		AMC-III		
		AIVIO-III		
Growing Season	1.4	2.1		
	1.4 0.5			
NonGrowing Season		2.1		
NonGrowing Season Watershed Data	0.5	2.1 1.1	3S EX - To No	orth
NonGrowing Season Watershed Data Watershed Name	0.5 1S EX - Ea:	2.1 1.1 2S EX - To	3S EX - To No Ex Loading	orth
NonGrowing Season Watershed Data Watershed Name Runoff to Device	0.5	2.1 1.1 2S EX - To		orth
NonGrowing Season Watershed Data Watershed Name Runoff to Device Infiltration to Device	0.5 1S EX - Ea Ex Loading	2.1 1.1 2S EX - To Ex Loading	Ex Loading	orth
NonGrowing Season Watershed Data Watershed Name Runoff to Device Infiltration to Device Watershed Area	0.5 1S EX - Ea: Ex Loading 3.352	2.1 1.1 2S EX - To Ex Loading 0.064	Ex Loading 0.542	orth
NonGrowing Season Watershed Data Watershed Name Runoff to Device Infiltration to Device Watershed Area SCS Curve Number (Pervious)	0.5 1S EX - Ea: Ex Loading 3.352 86	2.1 1.1 2S EX - To Ex Loading	Ex Loading	orth
NonGrowing Season Watershed Data Watershed Name Runoff to Device Infiltration to Device Watershed Area SCS Curve Number (Pervious) Scale Factor for Pervious Runoff	0.5 1S EX - Ea: Ex Loading 3.352 86 L 1	2.1 1.1 2S EX - To 2 Ex Loading 0.064 76 1	Ex Loading 0.542 76 1	orth
NonGrowing Season Watershed Data Watershed Name Runoff to Device Infiltration to Device Watershed Area SCS Curve Number (Pervious) Scale Factor for Pervious Runoff Indirectly Connected Imperv Frace	0.5 1S EX - Ea: Ex Loading 3.352 86 L 1	2.1 1.1 2S EX - To Ex Loading 0.064	Ex Loading 0.542	orth
NonGrowing Season Watershed Data Watershed Name Runoff to Device Infiltration to Device Watershed Area SCS Curve Number (Pervious) Scale Factor for Pervious Runoff Indirectly Connected Imperv Frac	0.5 1S EX - Ea: Ex Loading 3.352 86 L 1 ct 0 0	2.1 1.1 2S EX - To Ex Loading 0.064 76 1 0	0.542 76 1 0	orth
NonGrowing Season Watershed Data Watershed Name Runoff to Device Infiltration to Device Watershed Area SCS Curve Number (Pervious) Scale Factor for Pervious Runoff Indirectly Connected Imperv Frac UnSwept Impervious Fraction UnSwept Depression Storage (incompleted Impervious Fraction)	0.5 1S EX - Ea: Ex Loading 3.352 86 1 1 ct 0 0 0 0.02	2.1 1.1 2S EX - To Ex Loading 0.064 76 1 0 0.02	0.542 76 1 0	orth
NonGrowing Season Watershed Data Watershed Name Runoff to Device Infiltration to Device Watershed Area SCS Curve Number (Pervious) Scale Factor for Pervious Runoff Indirectly Connected Imperv Frac UnSwept Impervious Fraction UnSwept Depression Storage (incursive procession Storage)	0.5 1S EX - Ea: Ex Loading 3.352 86 L 1 ct 0 0 c 0.02 e 1	2.1 1.1 2S EX - To Ex Loading 0.064 76 1 0 0 0.02 1	0.542 76 1 0	orth
Watershed Data Watershed Name Runoff to Device Infiltration to Device Watershed Area SCS Curve Number (Pervious) Scale Factor for Pervious Runoff Indirectly Connected Imperv Frac UnSwept Impervious Fraction UnSwept Depression Storage (inc	0.5 1S EX - Ea: Ex Loading 3.352 86 L 1 ct 0 0 c 0.02 e 1	2.1 1.1 2S EX - To Ex Loading 0.064 76 1 0 0.02	0.542 76 1 0	orth

Swept Imperv. Runoff Coefficient	1	1	1
Swept Scale Factor for Particle Lo	1	1	1
Sweeping Frequency	0.5	0.5	0.5
Sweeping Efficiency	1	1	1
Sweeping Start Date (MMDD)	101	101	101
Sweeping Stop Date (MMDD)	1231	1231	1231

Dev	/ice	Data	
_			

Device Name Ex Loading
Device Type PIPE

Infiltration Outlet
Normal Outlet

Spillway Outlet

Particle Removal Scale Factor

Bottom Elevation (ft) Bottom Area (acres)

Permanent Pool Area (acres)

Permanent Pool Volume (ac-ft)

Perm Pool Infilt Rate (in/hr)

Flood Pool Area (acres)

Flood Pool Volume (ac-ft)

Flood Pool Infilt Rate (in/hr)

Infilt Basin Void Fraction (%)

Detention Pond Outlet Parameters

Outlet Type

Outlet Orifice Diameter (in)

Orifice Discharge Coef

Outlet Weir Length (ft)

Weir Discharge Coef

Perforated Riser Height (ft)

Number of Holes in Riser

Holes Diameter

Flood Pool Drain Time (hrs)

Swale Parameters

Length of Flow Path (ft)

Slope of Flow Path %

Bottom Width (ft)

Side Slope (ft-v/ft-h)

Maximum Depth of Flow (ft)

Mannings n Constant

Hydraulic Model

Pipe, Splitter, Aquifer Parameter

Hydraulic Res. Time (hrs) 0.16

Particle Data

Particle File	nurp50.p8p				
Particle Class	P0%	P10%	P30%	P50%	P80%
Filtration Efficiency (%	0	25	100	100	100
Settling Velocity (ft/hr)	0	0.03	0.3	1.5	15
First Order Decay Rate	: 0	0	0	0	0
2nd Order Decay (1/da	. 0	0	0	0	0
Impervious Runoff Cor	1	0	0	0	0
Pervious Runoff Conc	1	100	100	100	200
Pervious Conc Expone	: 0	1	1	1	1
Accum. Rate (lbs-ac-d	. 0	1.75	1.75	1.75	3.5

Particle Removal Rate Washoff Coefficient Washoff Exponent Sweeper Efficiency	0 0 0 0	0.25 20 2 0	0.25 20 2 0	0.25 20 2 5	0.25 20 2 15		
Water Quality Component D	ata						
Component Name	TSS TF		TKN	CU	PB	ZN	HC
Water Quality Criteria	(ppm)						
Level 1	`` ´ 5	0.025	2	2	0.02	5	0.1
Level 2	10	0.05	1	0.0048	0.014	0.0362	0.5
Level 3	20	0.1	0.5	0.02	0.15	0.38	1
Content Scale Factor	1	1	1	1	1	1	1
Particle Composition (mg/kg)						
P0%	0	99000	600000	13600	2000	64000	250000
P10%	1000000	3850	15000	340	180	1600	22500
P30%	1000000	3850	15000	340	180	1600	22500
P50%	1000000	3850	15000	340	180	1600	22500
P80%	1000000	0	0	340	180	0	22500

Proposed - less 900 sf each lot **8**S Offsite to East (new Subcat) RG 3 To North **5**S out RG 1 Lot 1 **6S** RG 2 (new Subcat) To Street Routing Diagram for Priory - Haugo Soils Prepared by Sathre-Bergquist, Inc, Printed 8/31/2023 HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC (Subcat) Link Reach Pond

Printed 8/31/2023

Page 2

Rainfall Events Listing (selected events)

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	MSE 24-hr	3	Default	24.00	1	2.50	2
2	2-Year	MSE 24-hr	3	Default	24.00	1	2.87	2
3	10-Year	MSE 24-hr	3	Default	24.00	1	4.27	2
4	10day-snow	Spillway 1-day 10-day		Default	240.00	1	7.20	4
5	100-Year	MSE 24-hr	3	Default	24.00	1	7.41	2

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.149	74	>75% Grass cover, Good, HSG C (5S, 6S)
0.202	65	Amended Soils (8S)
0.216	65	Amended soils (7S)
0.031	61	Soil Amendment Area (6S)
0.393	98	Unconnected roofs, HSG C (5S, 6S, 7S, 8S)
0.849	76	Woods/grass comb., Fair, HSG C (4S, 5S, 7S, 8S)
1.840	78	TOTAL AREA

Printed 8/31/2023

Page 4

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
1.392	HSG C	4S, 5S, 6S, 7S, 8S
0.000	HSG D	
0.449	Other	6S, 7S, 8S
1.840		TOTAL AREA

Printed 8/31/2023

Page 5

Ground Covers (selected nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.149	0.000	0.000	0.149	>75% Grass cover, Good	5S, 6S
0.000	0.000	0.000	0.000	0.202	0.202	Amended Soils	8S
0.000	0.000	0.000	0.000	0.216	0.216	Amended soils	7S
0.000	0.000	0.000	0.000	0.031	0.031	Soil Amendment Area	6S
0.000	0.000	0.393	0.000	0.000	0.393	Unconnected roofs	5S, 6S,
							7S, 8S
0.000	0.000	0.849	0.000	0.000	0.849	Woods/grass comb., Fair	4S, 5S,
							7S, 8S
0.000	0.000	1.392	0.000	0.449	1.840	TOTAL AREA	

Priory - Haugo Soils

MSE 24-hr 3 1-Year Rainfall=2.50"

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment4S: (new Subcat)

Runoff Area=8,038 sf 0.00% Impervious Runoff Depth=0.69"

Flow Length=100' Slope=0.1200 '/' Tc=11.1 min CN=76 Runoff=0.18 cfs 0.011 af

Subcatchment5S: Lot 1 Runoff Area=17,559 sf 23.92% Impervious Runoff Depth=1.04" Flow Length=100' Slope=0.0850'/' Tc=8.4 min UI Adjusted CN=WQ Runoff=0.63 cfs 0.035 af

Subcatchment6S: To StreetRunoff Area=3,110 sf 48.33% Impervious Runoff Depth=1.23"
Flow Length=35' Slope=0.0400 '/' Tc=4.9 min CN=WQ Runoff=0.14 cfs 0.007 af

Subcatchment7S: (new Subcat)Runoff Area=27,422 sf 20.80% Impervious Runoff Depth=0.89"
Flow Length=245' Tc=10.1 min UI Adjusted CN=WQ Runoff=0.74 cfs 0.046 af

Subcatchment8S: To NorthRunoff Area=24,039 sf 23.72% Impervious Runoff Depth=0.92"
Flow Length=145' Tc=11.4 min UI Adjusted CN=WQ Runoff=0.64 cfs 0.042 af

Pond 1P: RG 1 Peak Elev=946.01' Storage=987 cf Inflow=0.63 cfs 0.035 af Discarded=0.01 cfs 0.031 af Primary=0.03 cfs 0.004 af Outflow=0.04 cfs 0.035 af

Pond 2P: RG 2 Peak Elev=931.23' Storage=1,340 cf Inflow=0.74 cfs 0.046 af

Discarded=0.02 cfs 0.046 af Primary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.046 af

Pond 3P: RG 3 Peak Elev=923.25' Storage=1,288 cf Inflow=0.64 cfs 0.042 af

Discarded=0.01 cfs 0.042 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.042 af

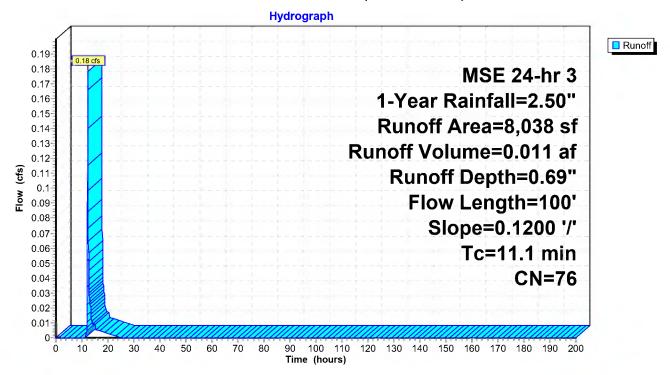
Pond 4P: Offsite to East Inflow=0.18 cfs 0.015 af Primary=0.18 cfs 0.015 af

Pond 27P: out Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.142 af Average Runoff Depth = 0.93" 78.66% Pervious = 1.448 ac 21.34% Impervious = 0.393 ac

Page 7

Summary for Subcatchment 4S: (new Subcat)


Runoff = 0.18 cfs @ 12.20 hrs, Volume= 0.011 af, Depth= 0.69"

Routed to Pond 4P: Offsite to East

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 1-Year Rainfall=2.50"

A	rea (sf)	CN	Description						
	8,038	76	Woods/grass comb., Fair, HSG C						
	8,038	76	76 100.00% Pervious Area						
Tc	Length	Slope	•	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
					Sheet Flow, Woods: Light underbrush	n= 0.400	P2= 2.88"		

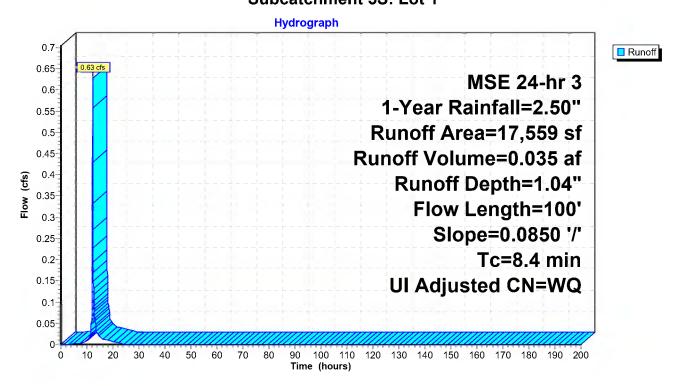
Subcatchment 4S: (new Subcat)

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 8

Summary for Subcatchment 5S: Lot 1


Runoff = 0.63 cfs @ 12.16 hrs, Volume= 0.035 af, Depth= 1.04"

Routed to Pond 1P: RG 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 1-Year Rainfall=2.50"

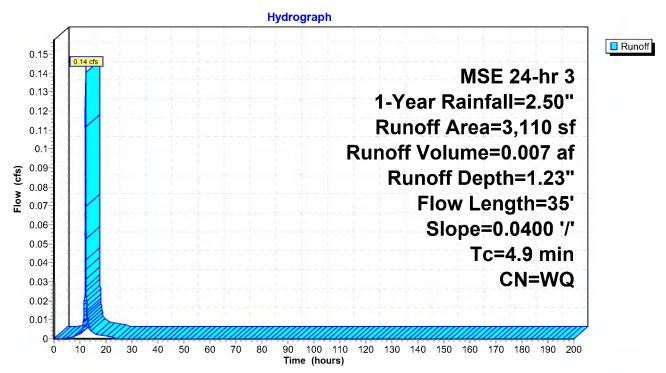
A	rea (sf)	CN A	Adj	Desc	ription					
	7,115	76	76	Woo	ds/grass co	omb., Fair, HSG C				
	6,244	74	74	>75%	6 Grass co	over, Good, HSG C				
	4,200	98	98	Unco	Inconnected roofs, HSG C					
	17,559			Weig	/eighted Average					
	13,359	75	75	76.08	76.08% Pervious Area					
	4,200	98	98	23.92	23.92% Impervious Area					
	4,200			100.0	00% Uncor	nnected				
Tc	Length	Slope		locity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft	/sec)	(cfs)					
8.4	100	0.0850		0.20		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 2.88"				

Subcatchment 5S: Lot 1

Page 9

Summary for Subcatchment 6S: To Street

Runoff = 0.14 cfs @ 12.12 hrs, Volume= 0.007 af, Depth= 1.23"


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 1-Year Rainfall=2.50"

_	Α	rea (sf)	CN	Description						
		268	74							
*		1,339	61	Soil Amendment Area						
		1,503	98	Inconnected roofs, HSG C						
		3,110	,	Veighted Average						
		1,607	63	51.67% Pervious Area						
		1,503	98	48.33% Imp	pervious Ar	ea				
		1,503		100.00% U	nconnected	k				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	4.9	35	0.0400	0.12		Sheet Flow,				

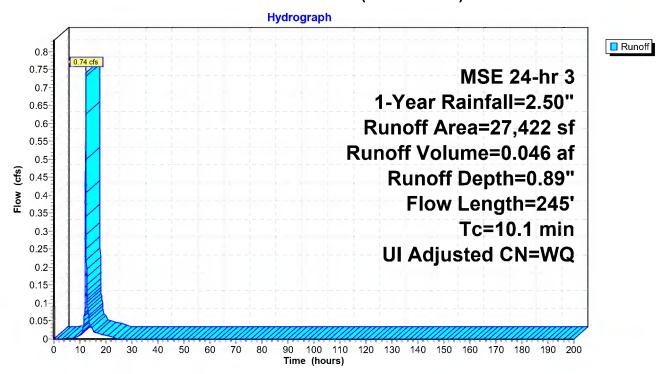
0 1 4 1 400 T 04 4

Grass: Dense n= 0.240 P2= 2.88"

Subcatchment 6S: To Street

Page 10

Summary for Subcatchment 7S: (new Subcat)


Runoff = 0.74 cfs @ 12.18 hrs, Volume= 0.046 af, Depth= 0.89"

Routed to Pond 2P: RG 2

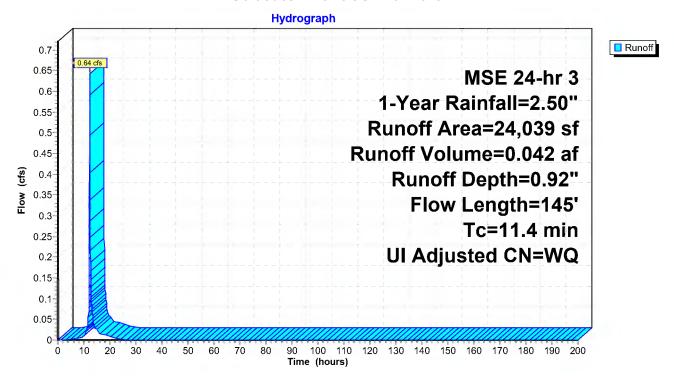
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 1-Year Rainfall=2.50"

_	Α	rea (sf)	CN .	Adj Des	scription			
		12,301	76	76 Wo	ods/grass co	omb., Fair, HSG C		
*		9,418	65	65 Am	ended soils			
		0	74	>75	75% Grass cover, Good, HSG C			
		5,703	98	98 Und	nconnected roofs, HSG C			
	27,422 Weighted Average					age		
		21,719	71	71 79.5	20% Perviou	us Area		
		5,703	98	98 20.8	30% Impervi	ous Area		
		5,703		100	100.00% Unconnected			
	Тс	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	9.1	100	0.0700	0.18	1	Sheet Flow,		
						Grass: Dense n= 0.240 P2= 2.88"		
	1.0	145	0.1300	2.52		Shallow Concentrated Flow,		
_						Short Grass Pasture Kv= 7.0 fps		
_	10.1	245	Total					

Subcatchment 7S: (new Subcat)

Page 11

Summary for Subcatchment 8S: To North


Runoff = 0.64 cfs @ 12.20 hrs, Volume= 0.042 af, Depth= 0.92"

Routed to Pond 3P: RG 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 1-Year Rainfall=2.50"

	Д	rea (sf)	CN	Adj De	escription			
		9,546	76	76 W	oods/grass co	omb., Fair, HSG C		
*	•	8,790	65	65 Ar	Amended Soils			
		0	74	>7	75% Grass cover, Good, HSG C			
_		5,703	98	98 Ur	nconnected ro	oofs, HSG C		
_		24,039		W	eighted Avera	age		
		18,336	71	71 76	6.28% Perviou	us Area		
		5,703	98	98 23	3.72% Impervious Area			
		5,703		10	0.00% Uncor	nnected		
	Тс	Length	Slope	Veloci	ty Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sed	c) (cfs)			
	11.1	100	0.0430	0.1	15	Sheet Flow,		
						Grass: Dense n= 0.240 P2= 2.88"		
	0.3	45	0.1400	2.6	62	Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	11 4	145	Total					

Subcatchment 8S: To North

MSE 24-hr 3 1-Year Rainfall=2.50"

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023 Page 12

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 1P: RG 1

Inflow Area = 0.403 ac, 23.92% Impervious, Inflow Depth = 1.04" for 1-Year event

Inflow = 0.63 cfs @ 12.16 hrs, Volume= 0.035 af

Outflow = 0.04 cfs @ 13.54 hrs, Volume= 0.035 af, Atten= 94%, Lag= 82.7 min

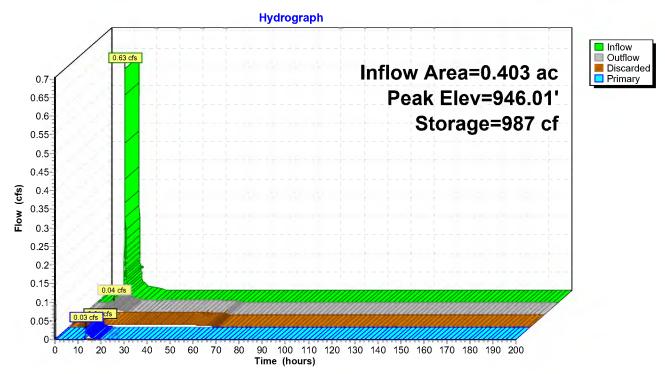
Discarded = 0.01 cfs @ 13.54 hrs, Volume= 0.031 af Primary = 0.03 cfs @ 13.54 hrs, Volume= 0.004 af

Routed to Pond 4P: Offsite to East

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 3 Peak Elev= 946.01' @ 13.54 hrs Surf.Area= 1,176 sf Storage= 987 cf

Plug-Flow detention time= 1,103.1 min calculated for 0.035 af (100% of inflow)

Center-of-Mass det. time= 1,103.4 min (1,900.9 - 797.5)


Volume	Invert	Avail.Sto	rage	Storage [Description		
#1	945.00'	2,37	70 cf	Custom	Stage Data (Pri	smatic)Listed below (Reca	alc)
Elevation	Surf.			Store	Cum.Store		
(feet)_	(\$	sq-ft)	(cubic	-feet)	(cubic-feet)		
945.00	_	775		0	0		
946.00		,170		973	973		
946.20		,265		244	1,216		
947.00	1	,620		1,154	2,370		
Device Ro	outina	Invert	Outle	et Devices			

Device	Routing	Invert	Outlet Devices
#1	Discarded	945.00'	0.300 in/hr Exfiltration over Surface area
#2	Primary	946.00'	EOF, Cv= 2.62 (C= 3.28)
			Head (feet) 1.00 1.20 2.00
			Width (feet) 5.00 10.00 65.00

Discarded OutFlow Max=0.01 cfs @ 13.54 hrs HW=946.01' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.02 cfs @ 13.54 hrs HW=946.01' (Free Discharge) 2=EOF (Weir Controls 0.02 cfs @ 0.36 fps)

Pond 1P: RG 1

Stage-Discharge for Pond 1P: RG 1

Elevation	Discharge	Discarded	Primary	Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
945.00	0.00	0.00	0.00	946.02	0.06	0.01	0.05
945.02	0.01	0.01	0.00	946.04	0.15	0.01	0.14
945.04	0.01	0.01	0.00	946.06	0.28	0.01	0.27
945.06	0.01	0.01	0.00	946.08	0.44	0.01	0.43
945.08	0.01	0.01	0.00	946.10	0.63	0.01	0.62
945.10	0.01	0.01	0.00	946.12	0.85	0.01	0.84
945.12	0.01	0.01	0.00	946.14	1.11	0.01	1.10
945.14	0.01	0.01	0.00	946.16	1.39	0.01	1.38
945.16	0.01	0.01	0.00	946.18	1.71	0.01	1.70
945.18	0.01	0.01	0.00	946.20	2.06	0.01	2.05
945.20	0.01	0.01	0.00	946.22	2.45	0.01	2.44
945.22	0.01	0.01	0.00	946.24	2.88	0.01	2.87
945.24	0.01	0.01	0.00	946.26	3.36	0.01	3.35
945.26	0.01	0.01	0.00	946.28	3.90	0.01	3.89
945.28	0.01	0.01	0.00	946.30	4.50	0.01	4.49
945.30	0.01	0.01	0.00	946.32	5.16	0.01	5.15
945.32	0.01	0.01	0.00	946.34	5.88	0.01	5.87
945.34	0.01	0.01	0.00	946.36	6.68	0.01	6.67
945.36	0.01	0.01	0.00	946.38	7.55	0.01	7.54
945.38	0.01	0.01	0.00	946.40	8.49	0.01	8.48
945.40	0.01	0.01	0.00	946.42	9.51	0.01	9.50
945.42	0.01	0.01	0.00	946.44	10.61	0.01	10.60
945.44	0.01	0.01	0.00	946.46	11.79	0.01	11.78
945.46	0.01	0.01	0.00	946.48	13.06	0.01	13.05
945.48	0.01	0.01	0.00	946.50	14.41	0.01	14.40
945.50	0.01	0.01	0.00	946.52	15.86	0.01	15.85
945.52	0.01	0.01	0.00	946.54	17.39	0.01	17.38
945.54	0.01	0.01	0.00	946.56	19.01	0.01	19.00
945.56	0.01	0.01	0.00	946.58	20.74	0.01	20.73
945.58	0.01	0.01	0.00	946.60	22.55	0.01	22.54
945.60	0.01	0.01	0.00	946.62	24.47	0.01	24.46
945.62	0.01	0.01	0.00	946.64	26.49	0.01	26.48
945.64	0.01	0.01	0.00	946.66	28.61	0.01	28.59
945.66	0.01	0.01	0.00	946.68	30.83	0.01	30.82
945.68	0.01	0.01	0.00	946.70	33.16	0.01	33.15
945.70	0.01	0.01	0.00	946.72	35.60	0.01	35.59
945.72	0.01	0.01	0.00	946.74	38.14	0.01	38.13
945.74	0.01	0.01	0.00	946.76	40.80	0.01	40.79
945.76	0.01	0.01	0.00	946.78	43.57	0.01	43.56
945.78	0.01	0.01	0.00	946.80	46.46	0.01	46.45
945.80	0.01	0.01	0.00	946.82	49.46	0.01	49.45
945.82	0.01	0.01	0.00	946.84	52.58	0.01	52.57
945.84	0.01	0.01	0.00	946.86	55.81	0.01	55.80
945.86	0.01	0.01	0.00	946.88	59.17	0.01	59.16
945.88	0.01	0.01	0.00	946.90	62.65	0.01	62.64
945.90	0.01	0.01	0.00	946.92	66.26	0.01	66.25
945.92	0.01	0.01	0.00	946.94	69.99	0.01	69.98
945.94	0.01	0.01	0.00	946.96	73.85	0.01	73.83
945.96	0.01	0.01	0.00	946.98	77.83	0.01	77.82
945.98	0.01	0.01	0.00	947.00	81.94	0.01	81.93
946.00	0.01	0.01	0.00				

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1P: RG 1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(s <u>q</u> -ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
945.00	775	0	946.02	1,179	996
945.02	783	16	946.04	1,189	1,020
945.04	791	31	946.06	1,198	1,044
945.06	799	47	946.08	1,208	1,068
945.08	807	63	946.10	1,218	1,092
945.10	815	79	946.12	1,227	1,116
945.12	822	96	946.14	1,236	1,141
945.14	830	112	946.16	1,246	1,166
945.16	838	129	946.18	1,255	1,191
945.18	846	146	946.20	1,265	1,216
945.20	854	163	946.22	1,274	1,241
945.22	862	180	946.24	1,283	1,267
945.24	870	197	946.26	1,292	1,293
945.26	878	215	946.28	1,300	1,319
945.28	886	232	946.30	1,309	1,345
945.30	893	250	946.32	1,318	1,371
945.32	901	268	946.34	1,327	1,397
945.34	909	286	946.36	1,336	1,424
945.36	917	305	946.38	1,345	1,451
945.38	925	323	946.40	1,354	1,478
945.40	933	342	946.42	1,363	1,505
945.42	941	360	946.44	1,372	1,532
945.44	949	379	946.46	1,380	1,560
945.46	957	398	946.48	1,389	1,588
945.48	965	418	946.50	1,398	1,615
945.50	973	437	946.52	1,407	1,644
945.52	980	456	946.54	1,416	1,672
945.54	988	476	946.56	1,425	1,700
945.56	996	496	946.58	1,434	1,729
945.58	1,004	516	946.60	1,443	1,758
945.60	1,012	536	946.62	1,451	1,786
945.62	1,020	556	946.64	1,460	1,816
945.64	1,028	577	946.66	1,469	1,845
945.66	1,036	598	946.68	1,478	1,874
945.68	1,044	618	946.70	1,487	1,904
945.70	1,052	639	946.72	1,496	1,934
945.72	1,059	660	946.74	1,505	1,964
945.74	1,067	682	946.76	1,513	1,994
945.76	1,075	703	946.78	1,522	2,024
945.78	1,083	725	946.80	1,531	2,055
945.80	1,091	746	946.82	1,540	2,086
945.82	1,099	768	946.84	1,549	2,116
945.84	1,107	790	946.86	1,558	2,148
945.86	1,115	813	946.88	1,567	2,179
945.88	1,123	835	946.90	1,576	2,210
945.90	1,130	857	946.92	1,584	2,242
945.92	1,138	880	946.94	1,593	2,274
945.94	1,146	903	946.96	1,602	2,306
945.96	1,154	926	946.98	1,611	2,338
945.98	1,162 1,170	949 073	947.00	1,620	2,370
946.00	1,170	973			
			ı		

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 16

Summary for Pond 2P: RG 2

Inflow Area = 0.630 ac, 20.80% Impervious, Inflow Depth = 0.89" for 1-Year event

Inflow = 0.74 cfs @ 12.18 hrs, Volume= 0.046 af

Outflow = 0.02 cfs @ 15.51 hrs, Volume= 0.046 af, Atten= 98%, Lag= 199.6 min

Discarded = 0.02 cfs @ 15.51 hrs, Volume= 0.046 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routed to Pond 27P: out

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Peak Elev= 931.23' @ 15.51 hrs Surf.Area= 1,284 sf Storage= 1,340 cf

Plug-Flow detention time=773.7 min calculated for 0.046 af (100% of inflow)

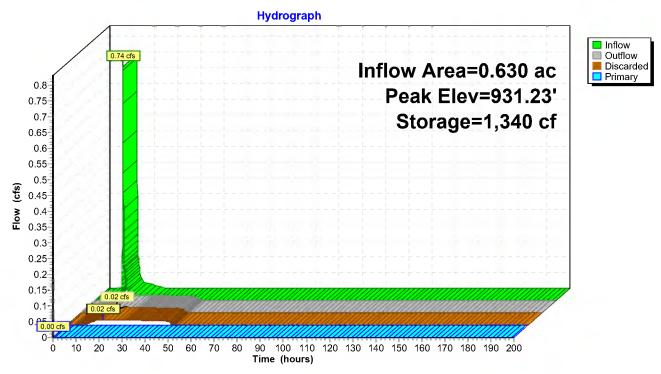
Center-of-Mass det. time= 773.8 min (1,575.5 - 801.7)

<u>Volume</u>	Invert	Avail.Sto	rage Storage	age Storage Description				
#1	930.00'	4,30	08 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)			
Elevatio		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
930.0	00	860	0	0				
931.0	00	1,240	1,050	1,050				
932.0	00	1,430	1,335	2,385				
932.2	20	1,760	319	2,704				
933.0	00	2,250	1,604	4,308				
Device	Routing	Invert	Outlet Device	es				
#1	Discarded	930.00'	0.600 in/hr Exfiltration over Surface area					
#2	#2 Primary 932.00' Custom Weir/Orifice, Cv= 2.62 (C= 3.28) Head (feet) 1.00 1.20 2.00							

Width (feet) 5.00 10.00 30.00

Discarded OutFlow Max=0.02 cfs @ 15.51 hrs HW=931.23' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=930.00' (Free Discharge) 2=Custom Weir/Orifice (Controls 0.00 cfs)


MSE 24-hr 3 1-Year Rainfall=2.50" Printed 8/31/2023

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 17

Printed 8/31/2023 Page 18

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 2P: RG 2

Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)
930.00	0.00	0.00	0.00
930.05	0.01	0.01	0.00
930.10	0.01	0.01	0.00
930.15	0.01	0.01	0.00
930.20	0.01	0.01	0.00
930.25	0.01	0.01	0.00
930.30	0.01	0.01	0.00
930.35 930.40	0.01 0.01	0.01 0.01	0.00 0.00
930.40	0.01	0.01	0.00
930.43	0.01	0.01	0.00
930.55	0.01	0.01	0.00
930.60	0.01	0.01	0.00
930.65	0.02	0.02	0.00
930.70	0.02	0.02	0.00
930.75	0.02	0.02	0.00
930.80	0.02	0.02	0.00
930.85	0.02	0.02	0.00
930.90	0.02	0.02	0.00
930.95	0.02	0.02	0.00
931.00	0.02	0.02	0.00
931.05	0.02	0.02	0.00
931.10	0.02	0.02	0.00
931.15	0.02	0.02	0.00
931.20	0.02	0.02	0.00
931.25	0.02	0.02	0.00
931.30	0.02	0.02	0.00
931.35	0.02	0.02	0.00
931.40	0.02	0.02	0.00
931.45	0.02	0.02	0.00
931.50	0.02	0.02	0.00
931.55	0.02	0.02	0.00
931.60 931.65	0.02 0.02	0.02 0.02	0.00 0.00
931.70	0.02	0.02	0.00
931.75	0.02	0.02	0.00
931.80	0.02	0.02	0.00
931.85	0.02	0.02	0.00
931.90	0.02	0.02	0.00
931.95	0.02	0.02	0.00
932.00	0.02	0.02	0.00
932.05	0.22	0.02	0.20
932.10	0.64	0.02	0.62
932.15	1.26	0.02	1.24
932.20	2.07	0.02	2.05
932.25	3.10	0.02	3.07
932.30	4.33	0.03	4.31
932.35	5.79	0.03	5.76
932.40	7.48	0.03	7.46
932.45	9.42	0.03	9.39
932.50	11.61	0.03	11.58
			1

Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)
932.55	14.05	0.03	14.03
932.60	16.77	0.03	16.74
932.65	19.77	0.03	19.74
932.70	23.05	0.03	23.02
932.75	26.62	0.03	26.59
932.80	30.49	0.03	30.46
932.85	34.68	0.03	34.65
932.90	39.18	0.03	39.15
932.95	44.00	0.03	43.97
933.00	49.16	0.03	49.13

Storage

3,457

3,558

3,661

3,765

3,870

3,977

4,086

4,196

4,308

(cubic-feet) 3,358

Printed 8/31/2023 Page 19

Stage-Area-Storage for Pond 2P: RG 2

Surface

(sq-ft)

1,974 2,005

2,036

2,066

2,097

2,127

2,158

2,189

2,219

2,250

Elevation (feet)	Surface (s <u>q</u> -ft)	Storage (cubic-feet)	Elevation (feet)
930.00	860	0	932.55
930.05	879	43	932.60
930.03	898	88	932.65
		133	
930.15	917		932.70
930.20 930.25	936 955	180 227	932.75 932.80
930.30	974	275	932.85
930.35	993	324	932.90
930.40	1,012	374	932.95
930.45	1,031	425	933.00
930.50	1,050	478	955.00
930.55	1,069	530	
930.60	1,088	584	
930.65	1,107	639	
930.70	1,126	695	
930.75	1,145	752	
930.80	1,164	810	
930.85	1,183	868	
930.90	1,202	928	
930.95	1,221	988	
931.00	1,240	1,050	
931.05	1,249	1,112	
931.10	1,259	1,175	
931.15	1,268	1,238	
931.20	1,278	1,302	
931.25	1,288	1,366	
931.30	1,297	1,431	
931.35	1,307	1,496	
931.40	1,316	1,561	
931.45	1,326	1,627	
931.50	1,335	1,694	
931.55	1,344	1,761	
931.60	1,354	1,828	
931.65	1,363	1,896	
931.70	1,373	1,965	
931.75	1,383	2,033	
931.80	1,392	2,103	
931.85 931.90	1,402 1,411	2,173 2,243	
931.95	1,421	2,243 2,314	
932.00	1,430	2,385	
932.05	1,512	2,459	
932.10	1,595	2,536	
932.15	1,677	2,618	
932.20	1,760	2,704	
932.25	1,791	2,793	
932.30	1,821	2,883	
932.35	1,852	2,975	
932.40	1,882	3,068	
932.45	1,913	3,163	
932.50	1,944	3,260	

MSE 24-hr 3 1-Year Rainfall=2.50" Printed 8/31/2023

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 20

Summary for Pond 3P: RG 3

Inflow Area = 0.552 ac, 23.72% Impervious, Inflow Depth = 0.92" for 1-Year event

Inflow = 0.64 cfs @ 12.20 hrs, Volume= 0.042 af

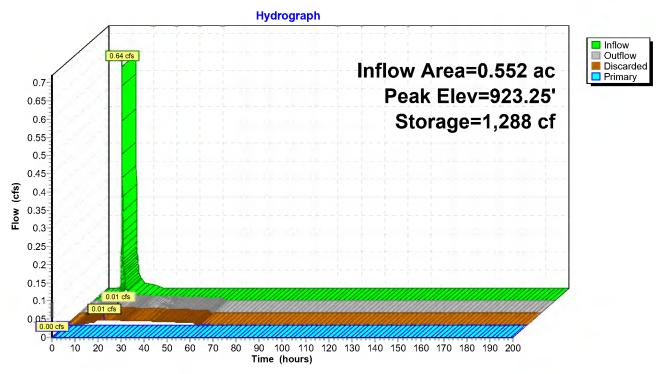
Outflow = 0.01 cfs @ 16.45 hrs, Volume= 0.042 af, Atten= 98%, Lag= 255.0 min

Discarded = 0.01 cfs @ 16.45 hrs, Volume= 0.042 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routed to Pond 27P: out

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 923.25' @ 16.45 hrs Surf.Area= 1,045 sf Storage= 1,288 cf

Plug-Flow detention time= 1,000.3 min calculated for 0.042 af (100% of inflow)


Center-of-Mass det. time= 1,000.5 min (1,799.6 - 799.0)

Volume	Invert	t Avail.Sto	rage Storage	Description			
#1	921.50	' 3,83	37 cf Custon	n Stage Data (Co	nic)Listed below	(Recalc)	
	_						
Elevation	on S	urf.Area	Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)		
921.5	50	440	0	0	440		
922.0	00	630	266	266	634		
922.3	30	725	203	469	733		
922.5	50	800	152	622	811		
923.0	00	890	422	1,044	914		
923.5	50	1,210	523	1,567	1,240		
923.9	90	1,500	541	2,108	1,534		
924.0	00	1,575	154	2,262	1,610		
925.0	00	1,575	1,575	3,837	1,751		
Device	Routing	Invert	Outlet Device	es			
#1	Discarded	921.50'	0.600 in/hr Exfiltration over Surface area				
#2	Primary	923.50'	Custom Wei	r/Orifice, Cv= 2.6	62 (C= 3.28)		
	·		Head (feet) 2	2.00 2.25 2.50 2	2.75		
	Width (feet) 5.00 10.00 40.00 50.00						

Discarded OutFlow Max=0.01 cfs @ 16.45 hrs HW=923.25' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=921.50' (Free Discharge) 2=Custom Weir/Orifice (Controls 0.00 cfs)

Printed 8/31/2023 Page 22

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 3P: RG 3

Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)
921.50	0.00	0.00	0.00
921.55	0.01	0.01	0.00
921.60	0.01	0.01	0.00
921.65	0.01	0.01	0.00
921.70	0.01	0.01	0.00
921.75	0.01	0.01	0.00
921.80	0.01	0.01	0.00
921.85	0.01	0.01	0.00
921.90	0.01	0.01	0.00
921.95	0.01	0.01	0.00
922.00	0.01	0.01	0.00
922.05	0.01	0.01	0.00
922.10	0.01	0.01	0.00
922.15	0.01	0.01	0.00
922.20	0.01	0.01	0.00
922.25	0.01	0.01	0.00
922.30	0.01	0.01	0.00
922.35	0.01	0.01	0.00
922.40	0.01	0.01	0.00
922.45	0.01	0.01	0.00
922.50	0.01	0.01	0.00
922.55	0.01	0.01	0.00
922.60	0.01	0.01	0.00
922.65	0.01	0.01	0.00
922.70	0.01	0.01	0.00
922.75	0.01	0.01	0.00
922.80	0.01	0.01	0.00
922.85	0.01	0.01	0.00
922.90	0.01	0.01	0.00
922.95	0.01	0.01	0.00
923.00	0.01	0.01	0.00
923.05	0.01	0.01	0.00
923.10	0.01	0.01	0.00
923.15	0.01	0.01	0.00
923.20	0.01	0.01	0.00
923.25	0.01	0.01	0.00
923.30	0.01	0.01	0.00
923.35	0.02	0.02	0.00
923.40	0.02	0.02	0.00
923.45 923.50	0.02	0.02	0.00
	0.02	0.02	I
923.55 923.60	0.22 0.62	0.02 0.02	0.20 0.60
923.65	1.20	0.02	1.18
923.70	1.20	0.02	1.16
923.75	2.88	0.02	2.87
923.80	4.08	0.02	4.06
923.85	5.72	0.02	5.70
923.90	7.96	0.02	7.94
923.95	10.87	0.02	10.85
924.00	14.54	0.02	14.51

Flavation	Disabassa	Disconded	Daine
Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)
924.05	18.98	0.02	18.96
924.10	24.10	0.02	24.08
924.15	29.87	0.02	29.85
924.20	36.27	0.02	36.25
924.25	43.30	0.02	43.28
924.30	49.10	0.02	49.08
924.35	53.90	0.02	53.88
924.40	58.18	0.02	58.16
924.45	62.12	0.02	62.09
924.50	65.78	0.02	65.76
924.55	69.23	0.02	69.21
924.60	72.50	0.02	72.47
924.65	75.61	0.02	75.59
924.70	78.60	0.02	78.58
924.75	81.47	0.02	81.44
924.80	84.23	0.02	84.21
924.85	86.91	0.02	86.89
924.90	89.50	0.02	89.48
924.95	92.02	0.02	92.00
925.00	94.47	0.02	94.44

Page 23

Stage-Area-Storage for Pond 3P: RG 3

		•	•		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
921.50	440	0	924.05	1,575	2,340
921.55	457	22	924.10	1,575	2,419
921.60	475	46	924.15	1,575	2,498
921.65	493	70	924.20	1,575	2,577
921.70	512	95	924.25	1,575	2,655
921.75	531	121	924.30	1,575	2,734
921.80	550	148	924.35	1,575	2,813
921.85	569	176	924.40	1,575	2,892
921.90	589	205	924.45	1,575	2,970
921.95	609	235	924.50	1,575	3,049
922.00	630	266	924.55	1,575	3,128
922.05	645	298	924.60	1,575	3,207
922.10	661	331	924.65	1,575	3,285
922.15	677	364	924.70	1,575	3,364
922.13	693	398	924.75	1,575 1,575	3,443
922.25	709				3,522
922.23	709 725	433	924.80	1,575	
		469 506	924.85 924.90	1,575	3,600
922.35	743	506		1,575	3,679
922.40	762	544 592	924.95	1,575	3,758
922.45	781	582	925.00	1,575	3,837
922.50	800	622			
922.55	809	662			
922.60	818	702			
922.65	826	744			
922.70	835	785			
922.75	844	827			
922.80	853	870			
922.85	862	912			
922.90	872	956			
922.95	881	1,000			
923.00	890	1,044			
923.05	920	1,089			
923.10	950	1,136			
923.15	981	1,184			
923.20	1,012	1,234			
923.25	1,044	1,285			
923.30	1,076	1,338			
923.35	1,109	1,393			
923.40	1,142	1,449			
923.45	1,176	1,507			
923.50	1,210	1,567			
923.55	1,245	1,628			
923.60	1,280	1,691			
923.65	1,315	1,756			
923.70	1,351	1,823			
923.75	1,388	1,891			
923.80	1,425	1,962			
923.85	1,462	2,034			
923.90	1,500	2,108			
923.95	1,537	2,184			
924.00	1,575	2,262			
S= 1.00	.,	_,			

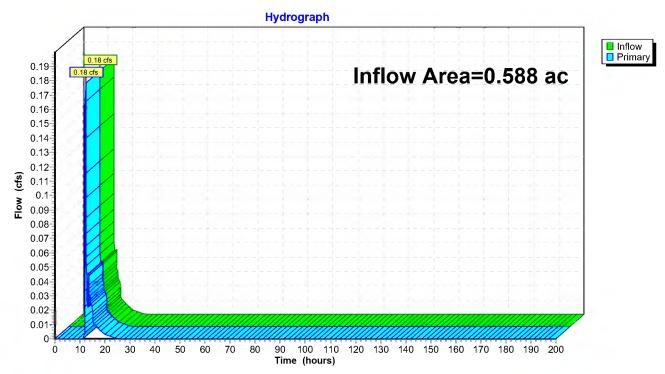
Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 24

Summary for Pond 4P: Offsite to East

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 0.588 ac, 16.41% Impervious, Inflow Depth = 0.30" for 1-Year event

Inflow = 0.18 cfs @ 12.20 hrs, Volume= 0.015 af

Primary = 0.18 cfs @ 12.20 hrs, Volume= 0.015 af, Atten= 0%, Lag= 0.0 min

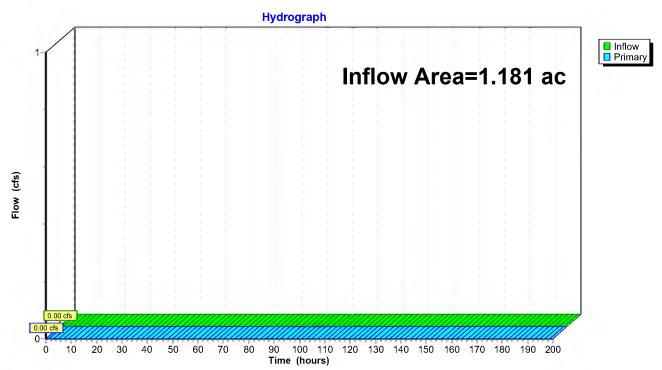
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 4P: Offsite to East

Page 25

Summary for Pond 27P: out

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 1.181 ac, 22.16% Impervious, Inflow Depth = 0.00" for 1-Year event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 27P: out

Priory - Haugo Soils

MSE 24-hr 3 2-Year Rainfall=2.87"

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 26

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment4S: (new Subcat)

Runoff Area=8,038 sf 0.00% Impervious Runoff Depth=0.93"

Flow Length=100' Slope=0.1200 '/' Tc=11.1 min CN=76 Runoff=0.24 cfs 0.014 af

Subcatchment5S: Lot 1 Runoff Area=17,559 sf 23.92% Impervious Runoff Depth=1.30" Flow Length=100' Slope=0.0850'/ Tc=8.4 min UI Adjusted CN=WQ Runoff=0.80 cfs 0.044 af

Subcatchment6S: To Street Runoff Area=3,110 sf 48.33% Impervious Runoff Depth=1.48" Flow Length=35' Slope=0.0400 '/' Tc=4.9 min CN=WQ Runoff=0.17 cfs 0.009 af

Subcatchment7S: (new Subcat)Runoff Area=27,422 sf 20.80% Impervious Runoff Depth=1.12"
Flow Length=245' Tc=10.1 min UI Adjusted CN=WQ Runoff=0.96 cfs 0.059 af

Subcatchment8S: To North

Runoff Area=24,039 sf 23.72% Impervious Runoff Depth=1.16"

Flow Length=145' Tc=11.4 min UI Adjusted CN=WQ Runoff=0.83 cfs 0.053 af

Pond 1P: RG 1 Peak Elev=946.04' Storage=1,015 cf Inflow=0.80 cfs 0.044 af Discarded=0.01 cfs 0.032 af Primary=0.12 cfs 0.012 af Outflow=0.13 cfs 0.044 af

Pond 2P: RG 2 Peak Elev=931.56' Storage=1,775 cf Inflow=0.96 cfs 0.059 af

Discarded=0.02 cfs 0.059 af Primary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.059 af

Pond 3P: RG 3 Peak Elev=923.51' Storage=1,574 cf Inflow=0.83 cfs 0.053 af

Discarded=0.02 cfs 0.051 af Primary=0.02 cfs 0.002 af Outflow=0.03 cfs 0.053 af

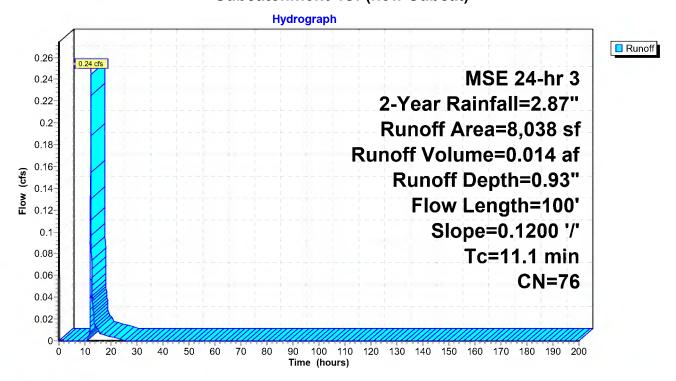
Pond 4P: Offsite to East Inflow=0.24 cfs 0.026 af Primary=0.24 cfs 0.026 af

Pond 27P: out Inflow=0.02 cfs 0.002 af Primary=0.02 cfs 0.002 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.179 af Average Runoff Depth = 1.17"
78.66% Pervious = 1.448 ac 21.34% Impervious = 0.393 ac

Page 27

Summary for Subcatchment 4S: (new Subcat)


Runoff = 0.24 cfs @ 12.20 hrs, Volume= 0.014 af, Depth= 0.93"

Routed to Pond 4P: Offsite to East

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 2-Year Rainfall=2.87"

A	rea (sf)	CN	Description						
	8,038	76	6 Woods/grass comb., Fair, HSG C						
	8,038	76	76 100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	-	Capacity (cfs)	Description				
11.1	100	0.1200	0.15		Sheet Flow, Woods: Light underbrush	n= 0.400	P2= 2.88"		

Subcatchment 4S: (new Subcat)

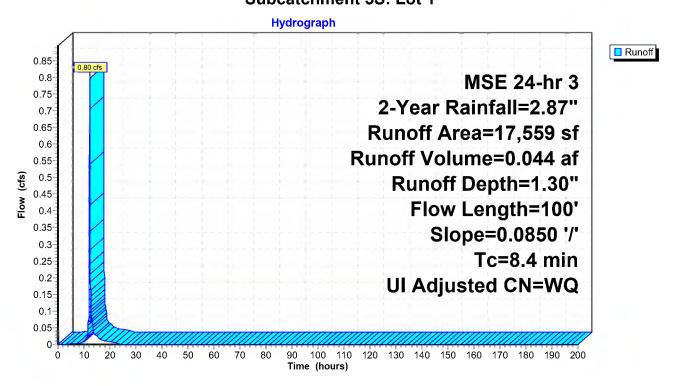
Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 28

Summary for Subcatchment 5S: Lot 1


Runoff = 0.80 cfs @ 12.16 hrs, Volume= 0.044 af, Depth= 1.30"

Routed to Pond 1P: RG 1

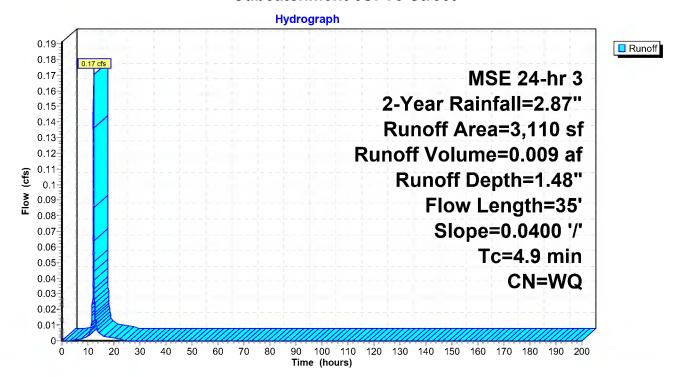
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 2-Year Rainfall=2.87"

	rea (sf)	CN .	Adj	Desc	ription				
	7,115	76	76	Wood	ds/grass co	omb., Fair, HSG	С		
	6,244	74	74	>75%	6 Grass co	ver, Good, HSG	С		
	4,200	98	98	Unco	nnected ro	oofs, HSG C			
	17,559			Weig	hted Avera	age			
	13,359	75	75	76.08	3% Perviou	ıs Area			
	4,200	98	98	23.92% Impervious Area					
	4,200			100.0	00% Uncor	nnected			
Тс	Length	Slope	Veld	ocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/:	sec)	(cfs)				
8.4	100	0.0850	(0.20		Sheet Flow,			
						Grass: Dense	n= 0.240	P2= 2.88"	

Subcatchment 5S: Lot 1

Grass: Dense n= 0.240 P2= 2.88"

Page 29


Summary for Subcatchment 6S: To Street

Runoff = 0.17 cfs @ 12.12 hrs, Volume= 0.009 af, Depth= 1.48"

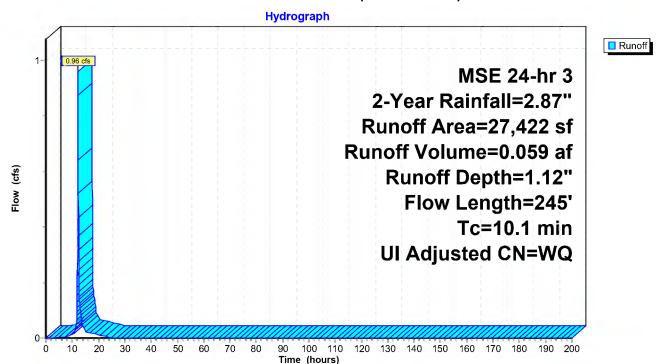
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 2-Year Rainfall=2.87"

	Aı	rea (sf)	CN	Description						
		268	74	>75% Gras	s cover, Go	ood, HSG C				
*		1,339	61	Soil Amend	lment Area					
		1,503	98	Unconnecte	ed roofs, H	SG C				
		3,110		Weighted A	verage					
		1,607	63	51.67% Pervious Area						
		1,503	98	48.33% Impervious Area						
		1,503		100.00% Unconnected						
	Тс	Length	Slope	e Velocity	Capacity	Description				
(r	min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	4.9	35	0.0400	0.12		Sheet Flow,				

Subcatchment 6S: To Street

Page 30

Summary for Subcatchment 7S: (new Subcat)


Runoff = 0.96 cfs @ 12.18 hrs, Volume= 0.059 af, Depth= 1.12"

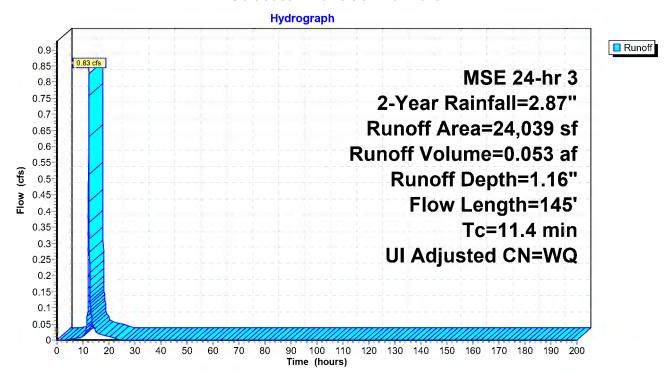
Routed to Pond 2P: RG 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 2-Year Rainfall=2.87"

_	Д	rea (sf)	CN	Adj D	escriptio	on	
		12,301	76	76 W	loods/gr	ass co	omb., Fair, HSG C
*		9,418	65	65 A	mended	soils	
		0	74	>	75% Gra	ass co	ver, Good, HSG C
_		5,703	98	98 U	nconnec	cted ro	oofs, HSG C
		27,422		V	/eighted	Avera	age
		21,719	71	71 79	9.20% P	erviou	us Area
		5,703	98	98 20	0.80% Ir	mpervi	ous Area
		5,703		10	00.00%	Uncor	nnected
	Тс	Length	Slope			pacity	Description
_	(min)	(feet)	(ft/ft)	(ft/se	ec)	(cfs)	
	9.1	100	0.0700	0.	18		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.88"
	1.0	145	0.1300	2.	52		Shallow Concentrated Flow,
_							Short Grass Pasture Kv= 7.0 fps
	10.1	245	Total				

Subcatchment 7S: (new Subcat)

Summary for Subcatchment 8S: To North


Runoff = 0.83 cfs @ 12.20 hrs, Volume= 0.053 af, Depth= 1.16"

Routed to Pond 3P: RG 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 2-Year Rainfall=2.87"

_	Α	rea (sf)	CN	Adj	Desc	ription	
		9,546	76	76	Woo	ds/grass co	omb., Fair, HSG C
*		8,790	65	65	Ame	nded Soils	
		0	74		>75%	6 Grass co	ver, Good, HSG C
		5,703	98	98	Unco	nnected re	oofs, HSG C
		24,039			Weig	hted Avera	age
		18,336	71		_	3% Perviou	•
		5,703	98	98	23.72	2% Impervi	ous Area
		5,703			100.0	00% Uncor	nnected
	Тс	Length	Slope	Velo	ocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/s	sec)	(cfs)	
	11.1	100	0.0430	(0.15		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.88"
	0.3	45	0.1400	2	2.62		Shallow Concentrated Flow,
_							Short Grass Pasture Kv= 7.0 fps
_	11 4	145	Total			•	

Subcatchment 8S: To North

MSE 24-hr 3 2-Year Rainfall=2.87" Printed 8/31/2023

Prepared by Sathre-Bergquist, Inc.

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 32

Summary for Pond 1P: RG 1

Inflow Area = 0.403 ac, 23.92% Impervious, Inflow Depth = 1.30" for 2-Year event

0.80 cfs @ 12.16 hrs, Volume= Inflow 0.044 af

Outflow 0.13 cfs @ 12.59 hrs, Volume= 0.044 af, Atten= 84%, Lag= 26.0 min

Discarded = 0.032 af 0.01 cfs @ 12.59 hrs, Volume= Primary 0.12 cfs @ 12.59 hrs, Volume= 0.012 af

Routed to Pond 4P: Offsite to East

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 3 Peak Elev= 946.04' @ 12.59 hrs Surf.Area= 1,187 sf Storage= 1,015 cf

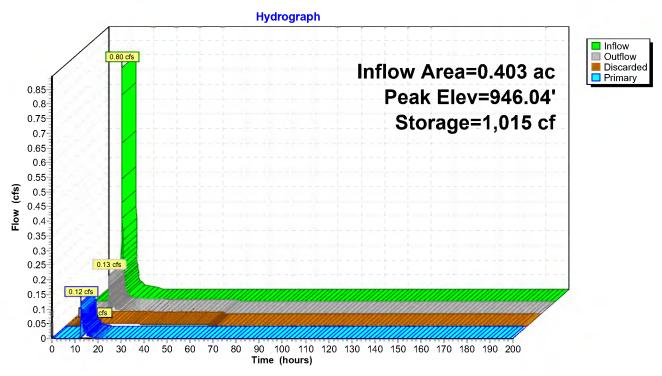
Plug-Flow detention time= 905.6 min calculated for 0.044 af (100% of inflow)

Center-of-Mass det. time= 905.7 min (1,701.3 - 795.6)

Volume	Invert	Avail.Sto	rage Stora	age Description	
#1	945.00'	2,3	70 cf Cus t	tom Stage Data (P	Prismatic)Listed below (Recalc)
Elevatio		urf.Area (sq-ft)	Inc.Store		
945.0	00	775	C	0	
946.0	00	1,170	973	973	
946.2	20	1,265	244	1,216	
947.0	00	1,620	1,154	2,370	
Device	Routing	Invert	Outlet Dev	vices	
#1	Discarded	945.00'	0.300 in/h	r Exfiltration over	r Surface area

#2 Primary 946.00' **EOF**, **Cv= 2.62 (C= 3.28)** Head (feet) 1.00 1.20 2.00 Width (feet) 5.00 10.00 65.00

Discarded OutFlow Max=0.01 cfs @ 12.59 hrs HW=946.04' (Free Discharge)


1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.12 cfs @ 12.59 hrs HW=946.04' (Free Discharge)

2=EOF (Weir Controls 0.12 cfs @ 0.61 fps)

Page 33

Pond 1P: RG 1

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 34

Printed 8/31/2023

Stage-Discharge for Pond 1P: RG 1

Elevation	Discharge	Discarded	Primary	Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
945.00	0.00	0.00	0.00	946.02	0.06	0.01	0.05
945.02	0.01	0.01	0.00	946.04	0.15	0.01	0.14
945.04	0.01	0.01	0.00	946.06	0.28	0.01	0.27
945.06	0.01	0.01	0.00	946.08	0.44	0.01	0.43
945.08	0.01	0.01	0.00	946.10	0.63	0.01	0.62
945.10	0.01	0.01	0.00	946.12	0.85	0.01	0.84
945.12	0.01	0.01	0.00	946.14	1.11	0.01	1.10
945.14	0.01	0.01	0.00	946.16	1.39	0.01	1.38
945.16	0.01	0.01	0.00	946.18	1.71	0.01	1.70
945.18	0.01	0.01	0.00	946.20	2.06	0.01	2.05
945.20	0.01	0.01	0.00	946.22	2.45	0.01	2.44
945.22	0.01	0.01	0.00	946.24	2.88	0.01	2.87
945.24	0.01	0.01	0.00	946.26	3.36	0.01	3.35
945.26	0.01	0.01	0.00	946.28	3.90	0.01	3.89
945.28	0.01	0.01	0.00	946.30	4.50	0.01	4.49
945.30	0.01	0.01	0.00	946.32	5.16	0.01	5.15
945.32	0.01	0.01	0.00	946.34	5.88	0.01	5.87
945.34	0.01	0.01	0.00	946.36	6.68	0.01	6.67
945.36	0.01	0.01	0.00	946.38	7.55	0.01	7.54
945.38	0.01	0.01	0.00	946.40	8.49	0.01	8.48
945.40	0.01	0.01	0.00	946.42	9.51	0.01	9.50
945.42	0.01	0.01	0.00	946.44	10.61	0.01	10.60
945.44	0.01	0.01	0.00	946.46	11.79	0.01	11.78
945.46	0.01	0.01	0.00	946.48	13.06	0.01	13.05
945.48	0.01	0.01	0.00	946.50	14.41	0.01	14.40
945.50	0.01	0.01	0.00	946.52	15.86	0.01	15.85
945.52	0.01	0.01	0.00	946.54	17.39	0.01	17.38
945.54	0.01	0.01	0.00	946.56	19.01	0.01	19.00
945.56	0.01	0.01	0.00	946.58	20.74	0.01	20.73
945.58	0.01	0.01	0.00	946.60	22.55	0.01	22.54
945.60	0.01	0.01	0.00	946.62	24.47	0.01	24.46
945.62	0.01	0.01	0.00	946.64	26.49	0.01	26.48
945.64	0.01	0.01	0.00	946.66	28.61	0.01	28.59
945.66	0.01	0.01	0.00	946.68	30.83	0.01	30.82
945.68	0.01	0.01	0.00	946.70	33.16	0.01	33.15
945.70	0.01	0.01	0.00	946.72	35.60	0.01	35.59
945.72	0.01	0.01	0.00	946.74	38.14	0.01	38.13
945.74	0.01	0.01	0.00	946.76	40.80	0.01	40.79
945.76	0.01	0.01	0.00	946.78	43.57	0.01	43.56
945.78	0.01	0.01	0.00	946.80	46.46	0.01	46.45
945.80	0.01	0.01	0.00	946.82	49.46	0.01	49.45
945.82	0.01	0.01	0.00	946.84	52.58	0.01	52.57
945.84	0.01	0.01	0.00	946.86	55.81	0.01	55.80
945.86	0.01	0.01	0.00	946.88	59.17	0.01	59.16
945.88	0.01	0.01	0.00	946.90	62.65	0.01	62.64
945.90	0.01	0.01	0.00	946.92	66.26	0.01	66.25
945.92	0.01	0.01	0.00	946.94	69.99	0.01	69.98
945.94	0.01	0.01	0.00	946.96	73.85	0.01	73.83
945.96	0.01	0.01	0.00	946.98	77.83	0.01	77.82
945.98	0.01	0.01	0.00	947.00	81.94	0.01	81.93
946.00	0.01	0.01	0.00				

Page 35

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1P: RG 1

-	0 (01	l er e	0 (01
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
945.00 945.02	775 783	0 16	946.02 946.04	1,179 1,189	996 1,020
945.04	791	31	946.06	1,198	1,044
945.06	799	47	946.08	1,198	1,044
945.08	807	63	946.10	1,218	1,092
945.10	815	79	946.12	1,227	1,116
945.12	822	96	946.14	1,236	1,141
945.14	830	112	946.16	1,246	1,166
945.16	838	129	946.18	1,255	1,191
945.18	846	146	946.20	1,265	1,216
945.20	854	163	946.22	1,274	1,241
945.22	862	180	946.24	1,283	1,267
945.24	870	197	946.26	1,292	1,293
945.26	878	215	946.28	1,300	1,319
945.28	886	232	946.30	1,309	1,345
945.30	893	250	946.32	1,318	1,371
945.32	901	268	946.34	1,327	1,397
945.34	909	286	946.36	1,336	1,424
945.36	917	305	946.38	1,345	1,451
945.38	925	323	946.40	1,354	1,478
945.40	933	342	946.42	1,363	1,505
945.42	941	360	946.44	1,372	1,532
945.44	949	379	946.46	1,380	1,560
945.46	957	398	946.48	1,389	1,588
945.48	965	418	946.50	1,398	1,615
945.50	973	437	946.52	1,407	1,644
945.52	980	456	946.54	1,416	1,672
945.54	988	476	946.56	1,425	1,700
945.56	996	496	946.58	1,434	1,729
945.58	1,004	516	946.60	1,443	1,758
945.60	1,012	536	946.62	1,451	1,786
945.62	1,020	556	946.64	1,460	1,816
945.64	1,028	577	946.66	1,469	1,845
945.66	1,036	598	946.68	1,478	1,874
945.68	1,044	618	946.70	1,487	1,904
945.70	1,052	639	946.72	1,496	1,934
945.72 945.74	1,059 1,067	660 682	946.74	1,505 1,513	1,964
945.74 945.76	1,067 1,075	703	946.76 946.78	,	1,994
945.78	1,075 1,083	703 725	946.80	1,522 1,531	2,024 2,055
945.80	1,003	725 746	946.82	1,540	2,033
945.82	1,099	748 768	946.84	1,549	2,116
945.84	1,107	790 790	946.86	1,558	2,118
945.86	1,115	813	946.88	1,567	2,179
945.88	1,123	835	946.90	1,576	2,210
945.90	1,130	857	946.92	1,584	2,242
945.92	1,138	880	946.94	1,593	2,274
945.94	1,146	903	946.96	1,602	2,306
945.96	1,154	926	946.98	1,611	2,338
945.98	1,162	949	947.00	1,620	2,370
946.00	1,170	973		,	,

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 36

Summary for Pond 2P: RG 2

Inflow Area = 0.630 ac, 20.80% Impervious, Inflow Depth = 1.12" for 2-Year event

Inflow = 0.96 cfs @ 12.18 hrs, Volume= 0.059 af

Outflow = 0.02 cfs @ 17.20 hrs, Volume= 0.059 af, Atten= 98%, Lag= 301.2 min

Discarded = 0.02 cfs @ 17.20 hrs, Volume= 0.059 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routed to Pond 27P: out

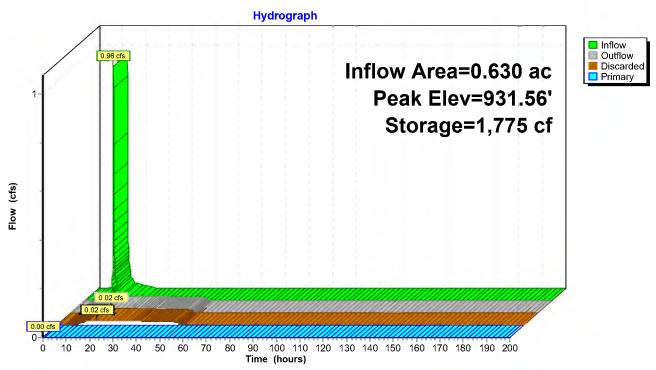
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Peak Elev= 931.56' @ 17.20 hrs Surf.Area= 1,346 sf Storage= 1,775 cf

Plug-Flow detention time= 968.1 min calculated for 0.059 af (100% of inflow)

Center-of-Mass det. time= 968.3 min (1,768.6 - 800.3)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	930.00'	4,30	08 of Custon	n Stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio	n Su	ırf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
930.0	00	860	0	0	
931.0	00	1,240	1,050	1,050	
932.0	00	1,430	1,335	2,385	
932.2	20	1,760	319	2,704	
933.0	00	2,250	1,604	4,308	
Device	Routing	Invert	Outlet Device	.e	
#1	Discarded	930.00'		xfiltration over	Surface area
#2	Drimany	032 001		r/Orifice Cy= 2	

#1 Discarded #2 Primary 930.00' **0.600 in/hr Exfiltration over Surface area**#2 **Custom Weir/Orifice, Cv= 2.62 (C= 3.28)**Head (feet) 1.00 1.20 2.00
Width (feet) 5.00 10.00 30.00


Discarded OutFlow Max=0.02 cfs @ 17.20 hrs HW=931.56' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=930.00' (Free Discharge) 2=Custom Weir/Orifice (Controls 0.00 cfs)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 37

Printed 8/31/2023 Page 38

Stage-Discharge for Pond 2P: RG 2

Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)
930.00	0.00	0.00	0.00
930.05	0.01	0.01	0.00
930.10	0.01	0.01	0.00
930.15	0.01	0.01	0.00
930.20	0.01	0.01	0.00
930.25 930.30	0.01 0.01	0.01 0.01	0.00 0.00
930.35	0.01	0.01	0.00
930.40	0.01	0.01	0.00
930.45	0.01	0.01	0.00
930.50	0.01	0.01	0.00
930.55	0.01	0.01	0.00
930.60	0.02	0.02	0.00
930.65	0.02	0.02	0.00
930.70 930.75	0.02 0.02	0.02 0.02	0.00 0.00
930.80	0.02	0.02	0.00
930.85	0.02	0.02	0.00
930.90	0.02	0.02	0.00
930.95	0.02	0.02	0.00
931.00	0.02	0.02	0.00
931.05	0.02	0.02	0.00
931.10	0.02	0.02	0.00
931.15	0.02 0.02	0.02 0.02	0.00 0.00
931.20 931.25	0.02	0.02	0.00
931.30	0.02	0.02	0.00
931.35	0.02	0.02	0.00
931.40	0.02	0.02	0.00
931.45	0.02	0.02	0.00
931.50	0.02	0.02	0.00
931.55	0.02	0.02	0.00
931.60 931.65	0.02	0.02	0.00
931.70	0.02 0.02	0.02 0.02	0.00
931.75	0.02	0.02	0.00
931.80	0.02	0.02	0.00
931.85	0.02	0.02	0.00
931.90	0.02	0.02	0.00
931.95	0.02	0.02	0.00
932.00	0.02	0.02	0.00
932.05	0.22	0.02	0.20
932.10 932.15	0.64 1.26	0.02 0.02	0.62 1.24
932.13	2.07	0.02	2.05
932.25	3.10	0.02	3.07
932.30	4.33	0.03	4.31
932.35	5.79	0.03	5.76
932.40	7.48	0.03	7.46
932.45	9.42	0.03	9.39
932.50	11.61	0.03	11.58

Elevation (feet) 932.55	Discharge (cfs)	Discarded (cfs)	Primary (cfs)
932.55	14.05	0.03	14.03
	16.77	0.03	16.74
932.65	19.77	0.03	19.74
932.70	23.05	0.03	23.02
932.75	26.62	0.03	26.59
932.80	30.49	0.03	30.46
932.85	34.68	0.03	34.65
932.90	39.18	0.03	39.15
932.95	44.00	0.03	43.97
933.00	49.16	0.03	49.13

Storage

3,457

3,558

3,661

3,765

3,870

3,977

4,086

4,196

4,308

(cubic-feet) 3,358 Page 39

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 2P: RG 2

Surface

(sq-ft)

1,974 2,005

2,036

2,066

2,097

2,127

2,158

2,189

2,219

2,250

Elevation (feet)	Surface (s <u>q</u> -ft)	Storage (cubic-feet)	Elevation (feet)
930.00	860	0	932.55
930.05	879	43	932.60
930.03	898	88	932.65
		133	
930.15	917		932.70
930.20 930.25	936 955	180 227	932.75 932.80
930.30	974	275	932.85
930.35	993	324	932.90
930.40	1,012	374	932.95
930.45	1,031	425	933.00
930.50	1,050	478	955.00
930.55	1,069	530	
930.60	1,088	584	
930.65	1,107	639	
930.70	1,126	695	
930.75	1,145	752	
930.80	1,164	810	
930.85	1,183	868	
930.90	1,202	928	
930.95	1,221	988	
931.00	1,240	1,050	
931.05	1,249	1,112	
931.10	1,259	1,175	
931.15	1,268	1,238	
931.20	1,278	1,302	
931.25	1,288	1,366	
931.30	1,297	1,431	
931.35	1,307	1,496	
931.40	1,316	1,561	
931.45	1,326	1,627	
931.50	1,335	1,694	
931.55	1,344	1,761	
931.60	1,354	1,828	
931.65	1,363	1,896	
931.70	1,373	1,965	
931.75	1,383	2,033	
931.80	1,392	2,103	
931.85 931.90	1,402 1,411	2,173 2,243	
931.95	1,421	2,243	
932.00	1,430	2,385	
932.05	1,512	2,459	
932.10	1,595	2,536	
932.15	1,677	2,618	
932.20	1,760	2,704	
932.25	1,791	2,793	
932.30	1,821	2,883	
932.35	1,852	2,975	
932.40	1,882	3,068	
932.45	1,913	3,163	
932.50	1,944	3,260	

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 40

Summary for Pond 3P: RG 3

Inflow Area = 0.552 ac, 23.72% Impervious, Inflow Depth = 1.16" for 2-Year event

Inflow = 0.83 cfs @ 12.20 hrs, Volume= 0.053 af

Outflow = 0.03 cfs @ 14.41 hrs, Volume= 0.053 af, Atten= 96%, Lag= 133.0 min

Discarded = 0.02 cfs @ 14.41 hrs, Volume= 0.051 af Primary = 0.02 cfs @ 14.41 hrs, Volume= 0.002 af

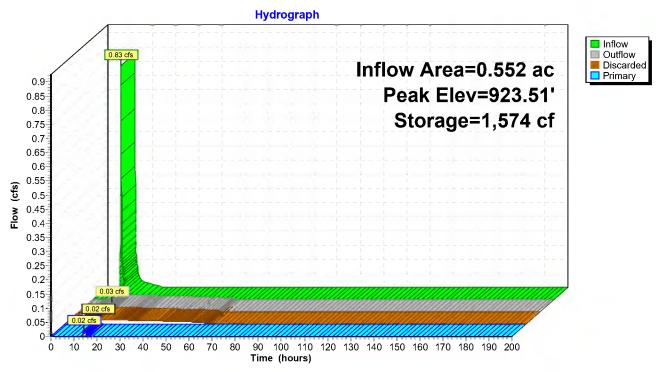
Routed to Pond 27P: out

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 923.51' @ 14.41 hrs Surf.Area= 1,214 sf Storage= 1,574 cf

Plug-Flow detention time= 1,057.7 min calculated for 0.053 af (100% of inflow)

Center-of-Mass det. time= 1,057.9 min (1,855.9 - 797.9)

Volume	Invert	t Avail.Sto	rage Storage	Description		
#1	921.50	' 3,83	37 cf Custon	n Stage Data (Co	nic)Listed below	(Recalc)
	_					
Elevation	on S	urf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
921.5	50	440	0	0	440	
922.0	00	630	266	266	634	
922.3	30	725	203	469	733	
922.5	50	800	152	622	811	
923.0	00	890	422	1,044	914	
923.5	50	1,210	523	1,567	1,240	
923.9	90	1,500	541	2,108	1,534	
924.0	00	1,575	154	2,262	1,610	
925.0	00	1,575	1,575	3,837	1,751	
Device	Routing	Invert	Outlet Device	es		
#1	Discarded	921.50'	0.600 in/hr E	xfiltration over S	Surface area	
#2	Primary	923.50'	Custom Wei	r/Orifice, Cv= 2.6	62 (C= 3.28)	
	·		Head (feet) 2	2.00 2.25 2.50 2	75	
			Width (feet)	5.00 10.00 40.00	50.00	


Discarded OutFlow Max=0.02 cfs @ 14.41 hrs HW=923.51' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.01 cfs @ 14.41 hrs HW=923.51' (Free Discharge) 2=Custom Weir/Orifice (Weir Controls 0.01 cfs @ 0.25 fps)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 41

Page 42

Printed 8/31/2023

Stage-Discharge for Pond 3P: RG 3

			•
Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)
921.50	0.00	0.00	0.00
921.55	0.01	0.01	0.00
921.60	0.01	0.01	0.00
921.65			
	0.01	0.01	0.00
921.70	0.01	0.01	0.00
921.75	0.01	0.01	0.00
921.80	0.01	0.01	0.00
921.85	0.01	0.01	0.00
921.90	0.01	0.01	0.00
921.95	0.01	0.01	0.00
922.00	0.01	0.01	0.00
922.05	0.01	0.01	0.00
922.10	0.01	0.01	0.00
922.15	0.01	0.01	0.00
922.20	0.01	0.01	0.00
922.25	0.01	0.01	0.00
922.30	0.01	0.01	0.00
922.35	0.01	0.01	0.00
922.40	0.01	0.01	0.00
922.45	0.01	0.01	0.00
922.50	0.01	0.01	0.00
922.55	0.01	0.01	0.00
922.60	0.01	0.01	0.00
922.65	0.01	0.01	0.00
922.70 922.75	0.01	0.01	0.00
922.73	0.01	0.01	0.00
	0.01	0.01	0.00
922.85	0.01	0.01	0.00
922.90	0.01	0.01	0.00
922.95	0.01	0.01	0.00
923.00	0.01	0.01	0.00
923.05	0.01	0.01	0.00
923.10	0.01	0.01	0.00
923.15	0.01	0.01	0.00
923.20	0.01	0.01	0.00
923.25	0.01	0.01	0.00
923.30	0.01	0.01	0.00
923.35	0.02	0.02	0.00
923.40	0.02	0.02	0.00
923.45	0.02	0.02	0.00
923.50	0.02	0.02	0.00
923.55	0.22	0.02	0.20
923.60	0.62	0.02	0.60
923.65	1.20	0.02	1.18
923.70	1.95	0.02	1.93
923.75	2.88	0.02	2.87
923.80	4.08	0.02	4.06
923.85	5.72	0.02	5.70
923.90	7.96	0.02	7.94
923.90	10.87	0.02	10.85
923.93	14.54	0.02 0.02	14.51
324.UU	14.04	0.02	14.51

Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)
924.05	18.98	0.02	18.96
924.10	24.10	0.02	24.08
924.15	29.87	0.02	29.85
924.20	36.27	0.02	36.25
924.25	43.30	0.02	43.28
924.30	49.10	0.02	49.08
924.35	53.90	0.02	53.88
924.40	58.18	0.02	58.16
924.45	62.12	0.02	62.09
924.50	65.78	0.02	65.76
924.55	69.23	0.02	69.21
924.60	72.50	0.02	72.47
924.65	75.61	0.02	75.59
924.70	78.60	0.02	78.58
924.75	81.47	0.02	81.44
924.80	84.23	0.02	84.21
924.85	86.91	0.02	86.89
924.90	89.50	0.02	89.48
924.95	92.02	0.02	92.00
925.00	94.47	0.02	94.44

Storage (cubic-feet) 2,340 2,419 2,498 2,577 2,655 2,734 2,813 2,892 2,970 3,049 3,128 3,207 3,285 3,364 3,443 3,522 3,600 3,679 3,758 3,837 Page 43

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

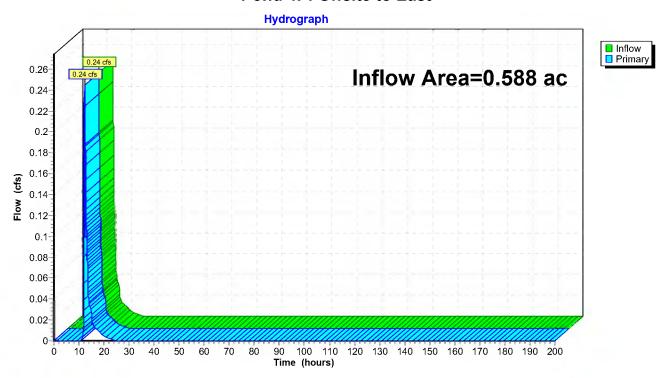
Stage-Area-Storage for Pond 3P: RG 3

		•	•	
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sg-ft)
921.50	440	0	924.05	1,575
921.55	457	22	924.10	1,575
921.60	475	46	924.15	1,575
921.65	493	70	924.20	1,575
921.70	512	95	924.25	
				1,575
921.75	531 550	121	924.30	1,575
921.80	550	148	924.35	1,575
921.85	569	176	924.40	1,575
921.90	589	205	924.45	1,575
921.95	609	235	924.50	1,575
922.00	630	266	924.55	1,575
922.05	645	298	924.60	1,575
922.10	661	331	924.65	1,575
922.15	677	364	924.70	1,575
922.20	693	398	924.75	1,575
922.25	709	433	924.80	1,575
922.30	725	469	924.85	1,575
922.35	743	506	924.90	1,575
922.40	762	544	924.95	1,575
922.45	781	582	925.00	1,575
922.50	800	622		
922.55	809	662		
922.60	818	702		
922.65	826	744		
922.70	835	785		
922.75	844	827		
922.80	853	870		
922.85	862	912		
922.90	872	956		
922.95	881	1,000		
923.00	890	1,044		
923.05	920	1,089		
923.10	950	1,136		
923.15	981	1,184		
923.20	1,012	1,234		
923.25	1,044	1,285		
923.30	1,076	1,338		
923.35	1,109	1,393		
923.40	1,142	1,449		
923.45	1,176	1,507		
923.50	1,210	1,567		
923.55	1,245	1,628		
923.60	1,280	1,691		
923.65	1,315	1,756		
923.70	1,351	1,823		
923.75	1,388	1,891		
923.80	1,425	1,962		
923.85	1,462	2,034		
923.90	1,500	2,108		
923.95	1,537	2,184		
924.00	1,575	2,164		
327.00	1,575	۷,۷۰۷		

Page 44

Summary for Pond 4P: Offsite to East

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 0.588 ac, 16.41% Impervious, Inflow Depth = 0.54" for 2-Year event

Inflow = 0.24 cfs @ 12.20 hrs, Volume= 0.026 af

Primary = 0.24 cfs @ 12.20 hrs, Volume= 0.026 af, Atten= 0%, Lag= 0.0 min

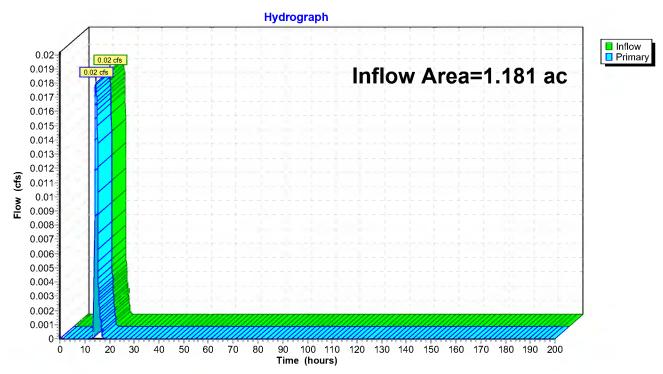
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 4P: Offsite to East

Page 45

Summary for Pond 27P: out

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 1.181 ac, 22.16% Impervious, Inflow Depth = 0.02" for 2-Year event

Inflow = 0.02 cfs @ 14.41 hrs, Volume= 0.002 af

Primary = 0.02 cfs @ 14.41 hrs, Volume= 0.002 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 27P: out

MSE 24-hr 3 10-Year Rainfall=4.27"

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 46

Printed 8/31/2023

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment4S: (new Subcat)

Runoff Area=8,038 sf 0.00% Impervious Runoff Depth=1.95"

Flow Length=100' Slope=0.1200 '/' Tc=11.1 min CN=76 Runoff=0.53 cfs 0.030 af

Subcatchment5S: Lot 1Runoff Area=17,559 sf 23.92% Impervious Runoff Depth=2.39"
Flow Length=100' Slope=0.0850 '/' Tc=8.4 min UI Adjusted CN=WQ Runoff=1.50 cfs 0.080 af

Subcatchment6S: To StreetRunoff Area=3,110 sf 48.33% Impervious Runoff Depth=2.52"
Flow Length=35' Slope=0.0400 '/' Tc=4.9 min CN=WQ Runoff=0.30 cfs 0.015 af

Subcatchment7S: (new Subcat)Runoff Area=27,422 sf 20.80% Impervious Runoff Depth=2.12"
Flow Length=245' Tc=10.1 min UI Adjusted CN=WQ Runoff=1.91 cfs 0.111 af

Subcatchment8S: To North

Runoff Area=24,039 sf 23.72% Impervious Runoff Depth=2.17"

Flow Length=145' Tc=11.4 min UI Adjusted CN=WQ Runoff=1.62 cfs 0.100 af

Pond 1P: RG 1 Peak Elev=946.15' Storage=1,156 cf Inflow=1.50 cfs 0.080 af Discarded=0.01 cfs 0.033 af Primary=1.27 cfs 0.047 af Outflow=1.28 cfs 0.080 af

Pond 2P: RG 2 Peak Elev=932.08' Storage=2,503 cf Inflow=1.91 cfs 0.111 af

Discarded=0.02 cfs 0.078 af Primary=0.43 cfs 0.033 af Outflow=0.45 cfs 0.111 af

Pond 3P: RG 3 Peak Elev=923.63' Storage=1,735 cf Inflow=1.62 cfs 0.100 af

Discarded=0.02 cfs 0.055 af Primary=0.98 cfs 0.044 af Outflow=1.00 cfs 0.099 af

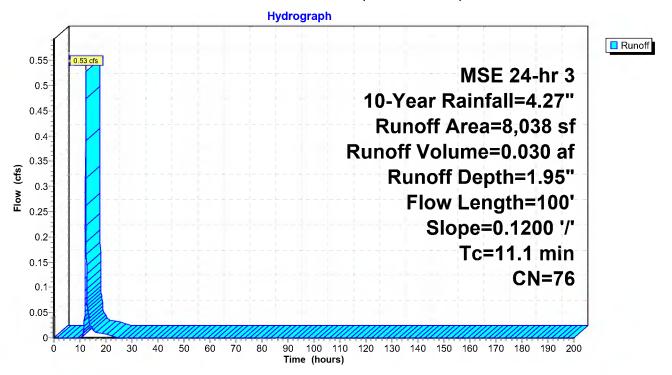
Pond 4P: Offsite to East Inflow=1.79 cfs 0.077 af Primary=1.79 cfs 0.077 af

Pond 27P: out Inflow=0.98 cfs 0.078 af Primary=0.98 cfs 0.078 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.336 af Average Runoff Depth = 2.19" 78.66% Pervious = 1.448 ac 21.34% Impervious = 0.393 ac

Page 47

Summary for Subcatchment 4S: (new Subcat)


Runoff = 0.53 cfs @ 12.19 hrs, Volume= 0.030 af, Depth= 1.95"

Routed to Pond 4P : Offsite to East

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 10-Year Rainfall=4.27"

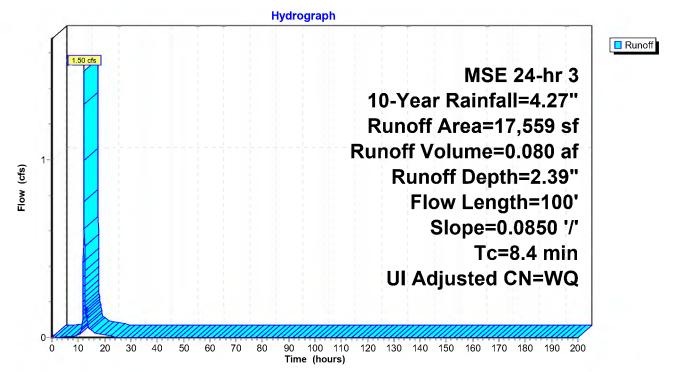
A	rea (sf)	CN	Description					
	8,038	76	Woods/gras	ss comb., F	air, HSG C			
	8,038	76	76 100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
11.1	100	0.1200		(015)	Sheet Flow,			
	100	0.1200	0.10		Woods: Light underbrush	n= 0.400	P2= 2.88"	

Subcatchment 4S: (new Subcat)

Page 48

Summary for Subcatchment 5S: Lot 1

Runoff = 1.50 cfs @ 12.16 hrs, Volume= 0.080 af, Depth= 2.39"


Routed to Pond 1P: RG 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 10-Year Rainfall=4.27"

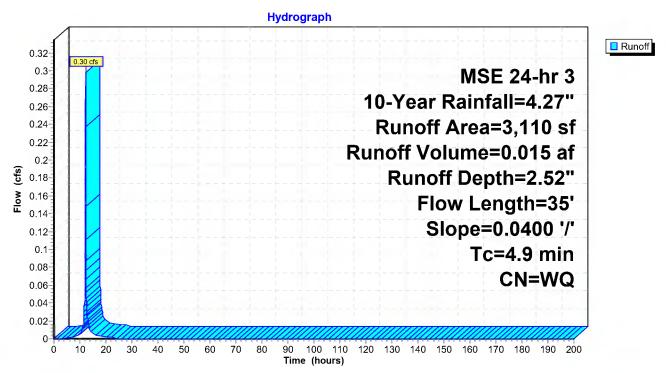
A	rea (sf)	CN .	Adj	Desci	ription	
	7,115	76	76	Woods/grass comb., Fair, HSG C		
	6,244	74	74	>75% Grass cover, Good, HSG C		
	4,200	98	98	Unco	Unconnected roofs, HSG C	
	17,559		,	Weigl	hted Avera	age
	13,359	75	75	76.08% Pervious Area		
	4,200	98	98	23.92	% Impervi	ious Area
	4,200			100.0	0% Uncon	nnected
Тс	Length	Slope		-	Capacity	Description
(min)_	(feet)	(ft/ft)	(ft/s	sec)	(cfs)	
8.4	100	0.0850	C	0.20		Sheet Flow,

Grass: Dense n= 0.240 P2= 2.88"

Subcatchment 5S: Lot 1

Page 49

Summary for Subcatchment 6S: To Street


Runoff = 0.30 cfs @ 12.12 hrs, Volume= 0.015 af, Depth= 2.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 10-Year Rainfall=4.27"

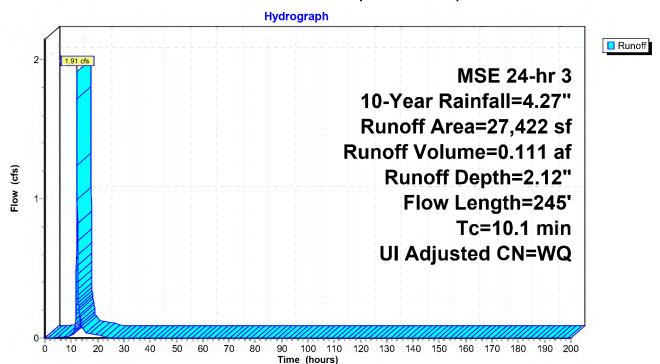
	Α	rea (sf)	CN I	Description					
		268	74	>75% Grass cover, Good, HSG C					
*		1,339	61	Soil Amend	ment Area				
		1,503	98	Inconnected roofs, HSG C					
		3,110	1	/eighted Average					
		1,607	63	51.67% Pervious Area					
		1,503	98 4	48.33% lmp	ervious Ar	ea			
		1,503		100.00% U	nconnected	k			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	4.9	35	0.0400	· · · · · · · · · · · · · · · · · · ·					

Grass: Dense n= 0.240 P2= 2.88"

Subcatchment 6S: To Street

Page 50

Summary for Subcatchment 7S: (new Subcat)


Runoff = 1.91 cfs @ 12.18 hrs, Volume= 0.111 af, Depth= 2.12"

Routed to Pond 2P: RG 2

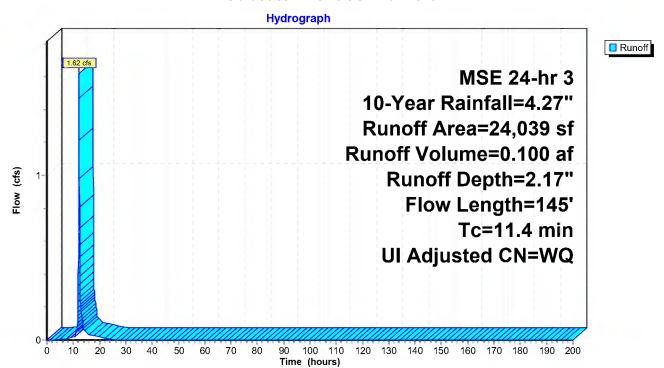
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 10-Year Rainfall=4.27"

_	Α	rea (sf)	CN .	Adj Des	cription		
		12,301	76	76 Wo	Woods/grass comb., Fair, HSG C		
*		9,418	65	65 Am	ended soils		
		0	74	>75	75% Grass cover, Good, HSG C		
_		5,703	98	98 Und	connected re	oofs, HSG C	
_		27,422		We	ghted Avera	age	
		21,719	71		20% Perviou	•	
		5,703	98	98 20.8	20.80% Impervious Area		
		5,703		100	.00% Uncor	nnected	
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	9.1	100	0.0700	0.18		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 2.88"	
	1.0	145	0.1300	2.52		Shallow Concentrated Flow,	
_						Short Grass Pasture Kv= 7.0 fps	
	10.1	245	Total	·			

Subcatchment 7S: (new Subcat)

Page 51

Summary for Subcatchment 8S: To North


Runoff = 1.62 cfs @ 12.20 hrs, Volume= 0.100 af, Depth= 2.17"

Routed to Pond 3P: RG 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 10-Year Rainfall=4.27"

	Д	rea (sf)	CN	Adj De	escription				
		9,546	76	76 W	Voods/grass comb., Fair, HSG C				
*	•	8,790	65	65 Ar	Amended Soils				
		0	74	>7	75% Grass cover, Good, HSG C				
_		5,703	98	98 Ur	Inconnected roofs, HSG C				
_		24,039		W	eighted Average				
		18,336	71	71 76	5.28% Perviou	us Area			
		5,703	98	98 23	23.72% Impervious Area				
		5,703		10	0.00% Uncor	nnected			
	Тс	Length	Slope	Veloci	ty Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sed	c) (cfs)				
	11.1	100	0.0430	0.1	5	Sheet Flow,			
						Grass: Dense n= 0.240 P2= 2.88"			
	0.3	45	0.1400	2.6	52	Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	11 4	145	Total						

Subcatchment 8S: To North

ı

Page 52

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 1P: RG 1

Inflow Area = 0.403 ac, 23.92% Impervious, Inflow Depth = 2.39" for 10-Year event

Inflow = 1.50 cfs @ 12.16 hrs, Volume= 0.080 af

Outflow = 1.28 cfs @ 12.21 hrs, Volume= 0.080 af, Atten= 15%, Lag= 3.3 min

Discarded = 0.01 cfs @ 12.21 hrs, Volume= 0.033 af Primary = 1.27 cfs @ 12.21 hrs, Volume= 0.047 af

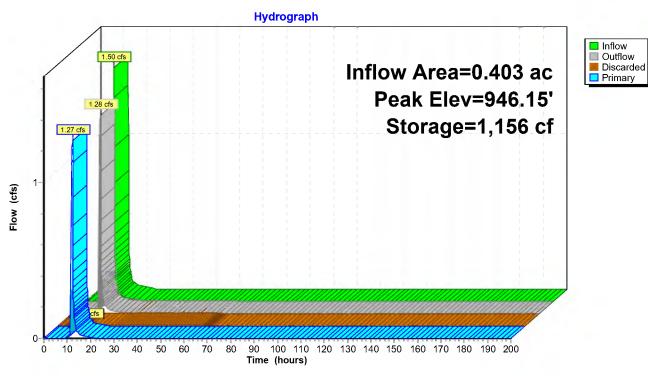
Routed to Pond 4P: Offsite to East

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 3 Peak Elev= 946.15' @ 12.21 hrs Surf.Area= 1,242 sf Storage= 1,156 cf

Plug-Flow detention time= 511.5 min calculated for 0.080 af (100% of inflow)

Center-of-Mass det. time= 514.0 min (1,303.4 - 789.4)

Volume	Invert A	vail.Storage	Storage	Description			
#1	945.00'	2,370 cf	Custon	n Stage Data (Pris	smatic)Listed be	elow (Recalc)	
Elevation	Surf.Are	a In	c.Store	Cum.Store			
(feet)	(sq-f	t) (cub	ic-feet)	(cubic-feet)			
945.00	77	5	0	0			
946.00	1,17	0	973	973			
946.20	1,26	5	244	1,216			
947.00	1,62	:0	1,154	2,370			
Device Ro	outina	Invert Out	let Device	es			


Device	Routing	IIIVEIL	Outlet Devices
#1	Discarded	945.00'	0.300 in/hr Exfiltration over Surface area
#2	Primary	946.00'	EOF, Cv= 2.62 (C= 3.28)
			Head (feet) 1.00 1.20 2.00
			Width (feet) 5.00 10.00 65.00

Discarded OutFlow Max=0.01 cfs @ 12.21 hrs HW=946.15' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 53

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 54

Stage-Discharge for Pond 1P: RG 1

Elevation	Discharge	Discarded	Primary	Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
945.00	0.00	0.00	0.00	946.02	0.06	0.01	0.05
945.02	0.01	0.01	0.00	946.04	0.15	0.01	0.14
945.04	0.01	0.01	0.00	946.06	0.28	0.01	0.27
945.06	0.01	0.01	0.00	946.08	0.44	0.01	0.43
945.08	0.01	0.01	0.00	946.10	0.63	0.01	0.62
945.10	0.01	0.01	0.00	946.12	0.85	0.01	0.84
945.12	0.01	0.01	0.00	946.14	1.11 1.39	0.01	1.10
945.14 945.16	0.01 0.01	0.01 0.01	0.00 0.00	946.16 946.18	1.39	0.01 0.01	1.38 1.70
945.18	0.01	0.01	0.00	946.16	2.06	0.01	2.05
945.10	0.01	0.01	0.00	946.22	2.45	0.01	2.03
945.20	0.01	0.01	0.00	946.24	2.43	0.01	2.44
945.24	0.01	0.01	0.00	946.26	3.36	0.01	3.35
945.26	0.01	0.01	0.00	946.28	3.90	0.01	3.89
945.28	0.01	0.01	0.00	946.30	4.50	0.01	4.49
945.30	0.01	0.01	0.00	946.32	5.16	0.01	5.15
945.32	0.01	0.01	0.00	946.34	5.88	0.01	5.87
945.34	0.01	0.01	0.00	946.36	6.68	0.01	6.67
945.36	0.01	0.01	0.00	946.38	7.55	0.01	7.54
945.38	0.01	0.01	0.00	946.40	8.49	0.01	8.48
945.40	0.01	0.01	0.00	946.42	9.51	0.01	9.50
945.42	0.01	0.01	0.00	946.44	10.61	0.01	10.60
945.44	0.01	0.01	0.00	946.46	11.79	0.01	11.78
945.46	0.01	0.01	0.00	946.48	13.06	0.01	13.05
945.48	0.01	0.01	0.00	946.50	14.41	0.01	14.40
945.50	0.01	0.01	0.00	946.52	15.86	0.01	15.85
945.52	0.01	0.01	0.00	946.54	17.39	0.01	17.38
945.54	0.01	0.01	0.00	946.56	19.01	0.01	19.00
945.56	0.01	0.01	0.00	946.58	20.74	0.01	20.73
945.58	0.01	0.01	0.00	946.60	22.55	0.01	22.54
945.60	0.01	0.01	0.00	946.62	24.47	0.01	24.46
945.62	0.01	0.01	0.00	946.64	26.49	0.01	26.48
945.64	0.01	0.01	0.00	946.66	28.61	0.01	28.59
945.66	0.01	0.01	0.00	946.68	30.83	0.01	30.82
945.68	0.01	0.01	0.00	946.70	33.16	0.01	33.15
945.70	0.01	0.01	0.00	946.72	35.60	0.01	35.59
945.72	0.01	0.01	0.00	946.74	38.14	0.01	38.13
945.74	0.01	0.01	0.00	946.76	40.80	0.01	40.79
945.76	0.01	0.01	0.00	946.78	43.57	0.01	43.56
945.78	0.01	0.01	0.00	946.80	46.46	0.01	46.45
945.80	0.01	0.01	0.00	946.82	49.46	0.01	49.45
945.82 945.84	0.01 0.01	0.01 0.01	0.00 0.00	946.84 946.86	52.58 55.81	0.01 0.01	52.57 55.80
945.86	0.01	0.01	0.00	946.88	59.17	0.01	59.16
945.88	0.01	0.01	0.00	946.90	62.65	0.01	62.64
945.90	0.01	0.01	0.00	946.92	66.26	0.01	66.25
945.90	0.01	0.01	0.00	946.94	69.99	0.01	69.98
945.92	0.01	0.01	0.00	946.96	73.85	0.01	73.83
945.96	0.01	0.01	0.00	946.98	77.83	0.01	73.83 77.82
945.98	0.01	0.01	0.00	947.00	81.94	0.01	81.93
946.00	0.01	0.01	0.00] 547.00	01.04	0.01	31.00
5 10.00	0.01	0.01	0.00				

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 55

Printed 8/31/2023

Stage-Area-Storage for Pond 1P: RG 1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(s <u>q</u> -ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
945.00	775	0	946.02	1,179	996
945.02	783	16	946.04	1,189	1,020
945.04	791	31	946.06	1,198	1,044
945.06	799	47	946.08	1,208	1,068
945.08	807	63	946.10	1,218	1,092
945.10	815	79	946.12	1,227	1,116
945.12	822	96	946.14	1,236	1,141
945.14	830	112	946.16	1,246	1,166
945.16	838	129	946.18	1,255	1,191
945.18	846	146	946.20	1,265	1,216
945.20	854	163	946.22	1,274	1,210
945.22	862	180	946.24	1,283	1,267
945.24	870	197	946.26	1,292	1,293
945.26	878	215	946.28	1,300	1,319
945.28	886	232	946.30	1,309	1,345
945.30	893	250	946.32	1,318	1,371
945.32	901	268	946.34	1,327	1,397
945.34	909	286	946.36	1,336	1,424
945.36	917	305	946.38	1,345	1,451
945.38	925	323	946.40	1,354	1,478
945.40	933	342	946.42	1,363	1,505
945.42	941	360	946.44	1,372	1,532
945.44	949	379	946.46	1,380	1,560
945.46	957	398	946.48	1,389	1,588
945.48	965	418	946.50	1,398	1,615
945.50	973	437	946.52	1,407	1,644
945.52	980	456	946.54	1,416	1,672
945.54	988	476	946.56	1,425	1,700
945.56	996	496	946.58	1,434	1,729
945.58	1,004	516	946.60	1,443	1,758
945.60	1,012	536	946.62	1,451	1,786
945.62	1,020	556	946.64	1,460	1,816
945.64	1,028	577	946.66	1,469	1,845
945.66	1,036	598	946.68	1,478	1,874
945.68	1,044	618	946.70	1,487	1,904
945.70	1,052	639	946.72	1,496	1,934
945.72	1,059	660	946.74	1,505	1,964
945.74	1,067	682	946.76	1,513	1,994
945.76	1,075	703	946.78	1,522	2,024
945.78	1,083	725	946.80	1,531	2,055
945.80	1,091	746	946.82	1,540	2,086
945.82	1,099	768	946.84	1,549	2,116
945.84	1,107	790 790	946.86	1,558	2,118
945.86	1,115	813	946.88	1,567	2,148
945.88		835	946.90	1,576	
	1,123		946.92		2,210
945.90	1,130	857		1,584	2,242
945.92	1,138	880	946.94	1,593	2,274
945.94	1,146	903	946.96	1,602	2,306
945.96	1,154	926	946.98	1,611	2,338
945.98	1,162	949	947.00	1,620	2,370
946.00	1,170	973			
			I		

Page 56

Summary for Pond 2P: RG 2

Inflow Area = 0.630 ac, 20.80% Impervious, Inflow Depth = 2.12" for 10-Year event

Inflow = 1.91 cfs @ 12.18 hrs, Volume= 0.111 af

Outflow = 0.45 cfs @ 12.53 hrs, Volume= 0.111 af, Atten= 76%, Lag= 21.3 min

Discarded = 0.02 cfs @ 12.53 hrs, Volume= 0.078 af Primary = 0.43 cfs @ 12.53 hrs, Volume= 0.033 af

Routed to Pond 27P: out

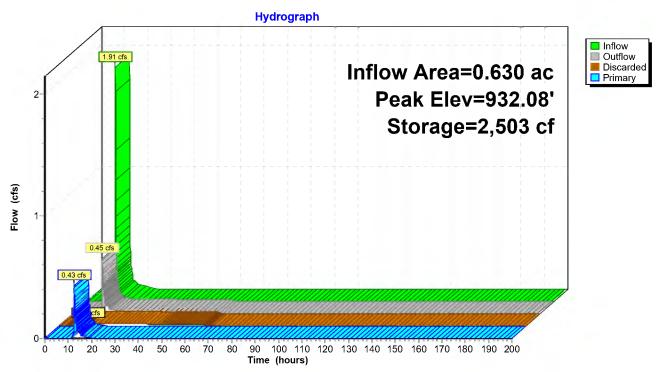
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Peak Elev= 932.08' @ 12.53 hrs Surf.Area= 1,561 sf Storage= 2,503 cf

Plug-Flow detention time= 866.0 min calculated for 0.111 af (100% of inflow)

Center-of-Mass det. time= 866.3 min (1,661.2 - 794.9)

<u>Volume</u>	Invert	Avail.Sto	rage Storage	e Description	
#1	930.00'	4,30	08 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
930.0	00	860	0	0	
931.0	00	1,240	1,050	1,050	
932.0	00	1,430	1,335	2,385	
932.2	20	1,760	319	2,704	
933.0	00	2,250	1,604	4,308	
Device	Routing	Invert	Outlet Device	es	
#1	Discarded	930.00'	0.600 in/hr E	Exfiltration over	Surface area
#2	Primary	932.00'		ir/Orifice, Cv= 2. 1.00 1.20 2.00	.62 (C= 3.28)

Width (feet) 5.00 10.00 30.00


Discarded OutFlow Max=0.02 cfs @ 12.53 hrs HW=932.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.42 cfs @ 12.53 hrs HW=932.08' (Free Discharge) 2=Custom Weir/Orifice (Weir Controls 0.42 cfs @ 0.89 fps)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 57

Page 58

Stage-Discharge for Pond 2P: RG 2

Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)
930.00	0.00	0.00	0.00
930.05	0.01	0.01	0.00
930.10	0.01	0.01	0.00
930.15	0.01	0.01	0.00
930.20	0.01	0.01	0.00
930.25	0.01	0.01	0.00
930.30	0.01	0.01	0.00
930.35	0.01	0.01	0.00
930.40	0.01	0.01	0.00
930.45	0.01	0.01	0.00
930.50	0.01	0.01	0.00
930.55	0.01	0.01	0.00
930.60	0.02	0.02	0.00
930.65	0.02	0.02	0.00
930.70	0.02	0.02	0.00
930.75	0.02	0.02	0.00
930.80	0.02	0.02	0.00
930.85	0.02	0.02	0.00
930.90	0.02	0.02	0.00
930.95	0.02	0.02	0.00
931.00	0.02	0.02	0.00
931.05	0.02	0.02	0.00
931.10	0.02	0.02	0.00
931.15	0.02	0.02	0.00
931.20	0.02	0.02	0.00
931.25	0.02	0.02	0.00
931.30	0.02	0.02	0.00
931.35	0.02	0.02	0.00
931.40	0.02	0.02	0.00
931.45	0.02	0.02	0.00
931.50	0.02	0.02	0.00
931.55	0.02	0.02	0.00
931.60	0.02	0.02	0.00
931.65	0.02	0.02	0.00
931.70	0.02	0.02	0.00
931.75	0.02	0.02	0.00
931.80	0.02	0.02	0.00
931.85	0.02	0.02	0.00
931.90	0.02	0.02	0.00
931.95	0.02	0.02	0.00
932.00	0.02	0.02	0.00
932.05	0.22	0.02	0.20
932.10	0.64	0.02	0.62
932.15	1.26	0.02	1.24
932.20	2.07	0.02	2.05
932.25	3.10	0.02	3.07
932.30	4.33	0.02	4.31
932.35	5.79	0.03	5.76
932.40	7.48	0.03	7.46
932.45	9.42	0.03	9.39
932.50	11.61	0.03	11.58
332.00		0.00	
			'

Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)
932.55	14.05	0.03	14.03
932.60	16.77	0.03	16.74
932.65	19.77	0.03	19.74
932.70	23.05	0.03	23.02
932.75	26.62	0.03	26.59
932.80	30.49	0.03	30.46
932.85	34.68	0.03	34.65
932.90	39.18	0.03	39.15
932.95	44.00	0.03	43.97
933.00	49.16	0.03	49.13

Storage

3,358

3,457

3,558

3,661

3,765

3,870

3,977

4,086

4,196

4,308

(cubic-feet)

Page 59

Stage-Area-Storage for Pond 2P: RG 2

Surface

(sq-ft)

1,974

2,005

2,036

2,066

2,097

2,127

2,158

2,189

2,219

2,250

		_	
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)
930.00	860	Ó	932.55
930.05	879	43	932.60
930.10	898	88	932.65
930.15	917	133	932.70
930.20	936	180	932.75
930.25	955	227	932.80
930.30	974	275	932.85
930.35	993	324	932.90
930.40	1,012	374	932.95
930.45	1,031	425	933.00
930.50	1,050	478	
930.55	1,069	530	
930.60	1,088	584	
930.65	1,107	639	
930.70	1,126	695 753	
930.75 930.80	1,145 1,164	752 810	
930.85	1,183	868	
930.90	1,202	928	
930.95	1,221	988	
931.00	1,240	1,050	
931.05	1,249	1,112	
931.10	1,259	1,175	
931.15	1,268	1,238	
931.20	1,278	1,302	
931.25	1,288	1,366	
931.30	1,297	1,431	
931.35	1,307	1,496	
931.40	1,316	1,561	
931.45	1,326	1,627	
931.50	1,335	1,694	
931.55 931.60	1,344 1,354	1,761 1,828	
931.65	1,363	1,896	
931.70	1,373	1,965	
931.75	1,383	2,033	
931.80	1,392	2,103	
931.85	1,402	2,173	
931.90	1,411	2,243	
931.95	1,421	2,314	
932.00	1,430	2,385	
932.05	1,512	2,459	
932.10	1,595	2,536	
932.15	1,677	2,618	
932.20	1,760	2,704	
932.25	1,791	2,793	
932.30	1,821 1,852	2,883 2,075	
932.35 932.40	1,852 1,882	2,975 3,068	
932.45	1,913	3,163	
932.50	1,944	3,260	
002.00	1,077	0,200	

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 60

Summary for Pond 3P: RG 3

Inflow Area = 0.552 ac, 23.72% Impervious, Inflow Depth = 2.17" for 10-Year event

Inflow = 1.62 cfs @ 12.20 hrs, Volume= 0.100 af

Outflow = 1.00 cfs @ 12.33 hrs, Volume= 0.099 af, Atten= 38%, Lag= 8.1 min

Discarded = 0.02 cfs @ 12.33 hrs, Volume= 0.055 af Primary = 0.98 cfs @ 12.33 hrs, Volume= 0.044 af

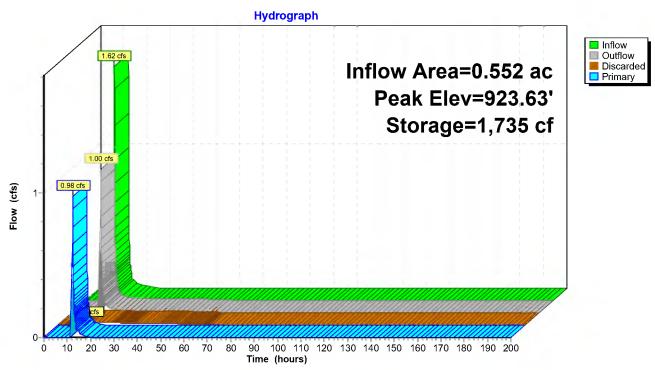
Routed to Pond 27P: out

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 923.63' @ 12.33 hrs Surf.Area= 1,304 sf Storage= 1,735 cf

Plug-Flow detention time= 616.3 min calculated for 0.099 af (100% of inflow) Center-of-Mass det. time= 616.1 min (1,409.3 - 793.2)

Volume	Invert	Avail.Sto	orage Storag	e Description		
#1	921.50'	3,8	37 cf Custo	m Stage Data (Co	nic)Listed below	(Recalc)
Elevation	on Si	urf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
921.5	50	440	0	0	440	
922.0	00	630	266	266	634	
922.3	30	725	203	469	733	
922.5	50	800	152	622	811	
923.0	00	890	422	1,044	914	
923.5	50	1,210	523	1,567	1,240	
923.9	90	1,500	541	2,108	1,534	
924.0	00	1,575	154	2,262	1,610	
925.0	00	1,575	1,575	3,837	1,751	
Device	Routing	Invert	Outlet Device	es		
#1	Discarded	921.50'	0.600 in/hr	Exfiltration over	Surface area	
#2	Primary	923.50'	Custom We	eir/Orifice, Cv= 2.0	62 (C= 3.28)	

#1 Discarded 921.50' **0.600 in/hr Exfiltration over Surface are**#2 Primary 923.50' **Custom Weir/Orifice, Cv= 2.62 (C= 3.28**Head (feet) 2.00 2.25 2.50 2.75
Width (feet) 5.00 10.00 40.00 50.00


Discarded OutFlow Max=0.02 cfs @ 12.33 hrs HW=923.63' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.94 cfs @ 12.33 hrs HW=923.63' (Free Discharge) 2=Custom Weir/Orifice (Weir Controls 0.94 cfs @ 1.14 fps)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 61

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 62

Stage-Discharge for Pond 3P: RG 3

Elevation	Discharge	Discarded	Primary	
(feet)	(cfs)	(cfs)	(cfs)	
921.50	0.00	0.00	0.00	_
921.55	0.01	0.01	0.00	
921.60	0.01	0.01	0.00	
921.65 921.70	0.01 0.01	0.01 0.01	0.00 0.00	
921.75	0.01	0.01	0.00	
921.80	0.01	0.01	0.00	
921.85	0.01	0.01	0.00	
921.90	0.01	0.01	0.00	
921.95 922.00	0.01 0.01	0.01 0.01	0.00 0.00	
922.05	0.01	0.01	0.00	
922.10	0.01	0.01	0.00	
922.15	0.01	0.01	0.00	
922.20	0.01	0.01	0.00	
922.25 922.30	0.01 0.01	0.01 0.01	0.00 0.00	
922.35	0.01	0.01	0.00	
922.40	0.01	0.01	0.00	
922.45	0.01	0.01	0.00	
922.50	0.01	0.01	0.00	
922.55 922.60	0.01 0.01	0.01 0.01	0.00 0.00	
922.65	0.01	0.01	0.00	
922.70	0.01	0.01	0.00	
922.75	0.01	0.01	0.00	
922.80	0.01	0.01	0.00	
922.85 922.90	0.01 0.01	0.01 0.01	0.00 0.00	
922.95	0.01	0.01	0.00	
923.00	0.01	0.01	0.00	
923.05	0.01	0.01	0.00	
923.10	0.01	0.01	0.00	
923.15 923.20	0.01 0.01	0.01 0.01	0.00 0.00	
923.25	0.01	0.01	0.00	
923.30	0.01	0.01	0.00	
923.35	0.02	0.02	0.00	
923.40	0.02	0.02	0.00	
923.45 923.50	0.02 0.02	0.02 0.02	0.00 0.00	
923.55	0.22	0.02	0.20	
923.60	0.62	0.02	0.60	
923.65	1.20	0.02	1.18	
923.70 923.75	1.95 2.88	0.02	1.93	
923.75	2.88 4.08	0.02 0.02	2.87 4.06	
923.85	5.72	0.02	5.70	
923.90	7.96	0.02	7.94	
923.95	10.87	0.02	10.85	
924.00	14.54	0.02	14.51	

Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)
924.05	18.98	0.02	18.96
924.10	24.10	0.02	24.08
924.15	29.87	0.02	29.85
924.20	36.27	0.02	36.25
924.25	43.30	0.02	43.28
924.30	49.10	0.02	49.08
924.35	53.90	0.02	53.88
924.40	58.18	0.02	58.16
924.45	62.12	0.02	62.09
924.50	65.78	0.02	65.76
924.55	69.23	0.02	69.21
924.60	72.50	0.02	72.47
924.65	75.61	0.02	75.59
924.70	78.60	0.02	78.58
924.75	81.47	0.02	81.44
924.80	84.23	0.02	84.21
924.85	86.91	0.02	86.89
924.90	89.50	0.02	89.48
924.95	92.02	0.02	92.00
925.00	94.47	0.02	94.44

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 63

Printed 8/31/2023

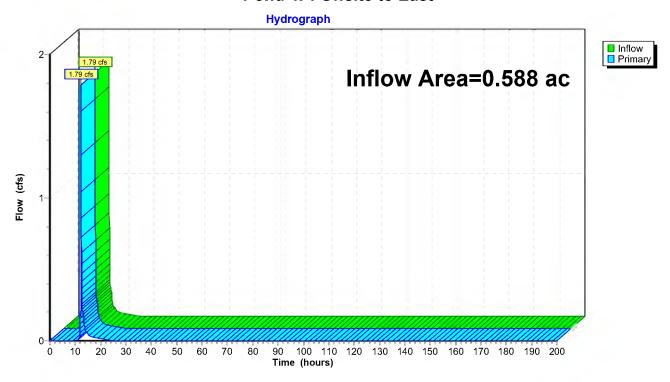
Stage-Area-Storage for Pond 3P: RG 3

		Otago 7110	a Otorago ioi	1 0114 01 1 10	, ,
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(s <u>q</u> -ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
921.50	440	0	924.05	1,575	2,340
921.55	457	22	924.10	1,575	2,419
921.60	475	46	924.15	1,575	2,498
921.65	493	70	924.20	1,575	2,577
921.70	512	95	924.25	1,575	2,655
921.75	531	121	924.30	1,575	2,734
921.80	550	148	924.35	1,575	2,813
921.85	569	176	924.40	1,575	2,892
921.90	589	205	924.45	1,575	2,970
921.95	609	235	924.50	1,575	3,049
922.00	630	266	924.55	1,575	3,128
922.05	645	298	924.60	1,575	3,207
922.10	661 677	331	924.65	1,575	3,285
922.15	677	364	924.70	1,575	3,364
922.20 922.25	693 709	398 433	924.75 924.80	1,575 1,575	3,443
922.23	709 725	469	924.85	1,575 1,575	3,522 3,600
922.35	743	506	924.90	1,575 1,575	3,679
922.40	762	544	924.95	1,575	3,758
922.45	781	582	925.00	1,575	3,837
922.50	800	622	020.00	1,070	0,007
922.55	809	662			
922.60	818	702			
922.65	826	744			
922.70	835	785			
922.75	844	827			
922.80	853	870			
922.85	862	912			
922.90	872	956			
922.95	881	1,000			
923.00	890	1,044			
923.05	920	1,089			
923.10	950	1,136			
923.15	981	1,184			
923.20 923.25	1,012	1,234 1,285			
923.25	1,044 1,076	1,265			
923.35	1,109	1,393			
923.40	1,142	1,449			
923.45	1,176	1,507			
923.50	1,210	1,567			
923.55	1,245	1,628			
923.60	1,280	1,691			
923.65	1,315	1,756			
923.70	1,351	1,823			
923.75	1,388	1,891			
923.80	1,425	1,962			
923.85	1,462	2,034			
923.90	1,500	2,108			
923.95	1,537	2,184			
924.00	1,575	2,262			
			i		

Page 64

Summary for Pond 4P: Offsite to East

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 0.588 ac, 16.41% Impervious, Inflow Depth = 1.58" for 10-Year event

Inflow = 1.79 cfs @ 12.21 hrs, Volume= 0.077 af

Primary = 1.79 cfs @ 12.21 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.0 min

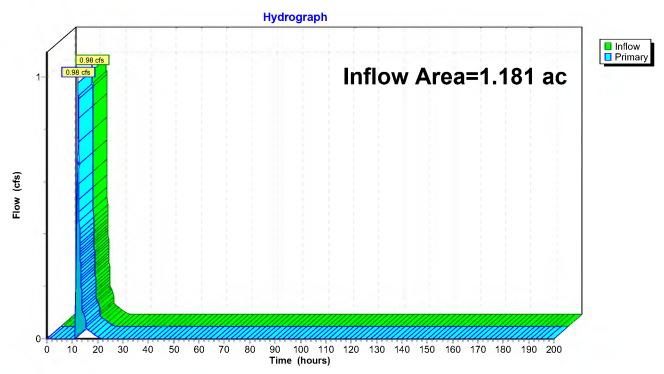
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 4P: Offsite to East

Page 65

Summary for Pond 27P: out

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 1.181 ac, 22.16% Impervious, Inflow Depth = 0.79" for 10-Year event

Inflow = 0.98 cfs @ 12.33 hrs, Volume= 0.078 af

Primary = 0.98 cfs @ 12.33 hrs, Volume= 0.078 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 27P: out

Priory - Haugo Soils

Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 66

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment4S: (new Subcat)

Runoff Area=8,038 sf 0.00% Impervious Runoff Depth>6.48"

Flow Length=100' Slope=0.1200 '/' Tc=11.1 min AMC Adjusted CN=98 Runoff=0.09 cfs 0.100 af

Subcatchment5S: Lot 1 Runoff Area=17,559 sf 23.92% Impervious Runoff Depth>6.48" Flow Length=100' Slope=0.0850 '/' Tc=8.4 min AMC UI Adjusted CN=WQ Runoff=0.19 cfs 0.218 af

Subcatchment6S: To StreetRunoff Area=3,110 sf 48.33% Impervious Runoff Depth>6.48"
Flow Length=35' Slope=0.0400 '/' Tc=4.9 min AMC Adjusted CN=WQ Runoff=0.03 cfs 0.039 af

Subcatchment7S: (new Subcat)

Runoff Area=27,422 sf 20.80% Impervious Runoff Depth>6.48"

Flow Length=245' Tc=10.1 min AMC UI Adjusted CN=WQ Runoff=0.30 cfs 0.340 af

Subcatchment8S: To NorthRunoff Area=24,039 sf 23.72% Impervious Runoff Depth>6.48"
Flow Length=145' Tc=11.4 min AMC UI Adjusted CN=WQ Runoff=0.26 cfs 0.298 af

Pond 1P: RG 1 Peak Elev=946.05' Storage=1,027 cf Inflow=0.19 cfs 0.218 af

Discarded=0.01 cfs 0.107 af Primary=0.18 cfs 0.090 af Outflow=0.19 cfs 0.197 af

Pond 2P: RG 2 Peak Elev=932.06' Storage=2,474 cf Inflow=0.30 cfs 0.340 af

Discarded=0.02 cfs 0.229 af Primary=0.28 cfs 0.081 af Outflow=0.30 cfs 0.310 af

Pond 3P: RG 3 Peak Elev=923.56' Storage=1,635 cf Inflow=0.26 cfs 0.298 af

Discarded=0.02 cfs 0.181 af Primary=0.24 cfs 0.094 af Outflow=0.26 cfs 0.275 af

Pond 4P: Offsite to East Inflow=0.27 cfs 0.190 af

Primary=0.27 cfs 0.190 af

Pond 27P: out Inflow=0.52 cfs 0.175 af

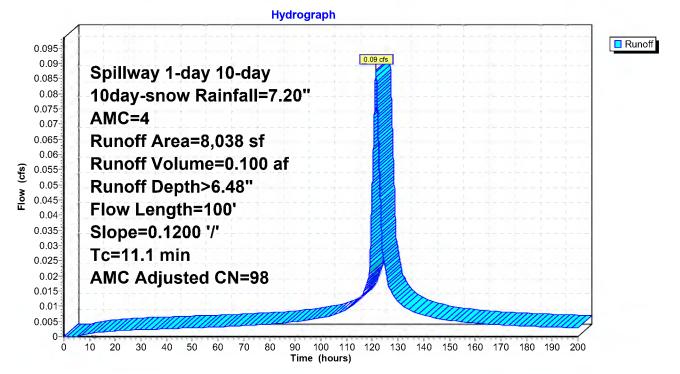
Primary=0.52 cfs 0.175 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.993 af Average Runoff Depth = 6.48" 78.66% Pervious = 1.448 ac 21.34% Impervious = 0.393 ac

Page 67

Summary for Subcatchment 4S: (new Subcat)

Runoff = 0.09 cfs @ 121.37 hrs, Volume= 0.10


0.100 af, Depth> 6.48"

Routed to Pond 4P: Offsite to East

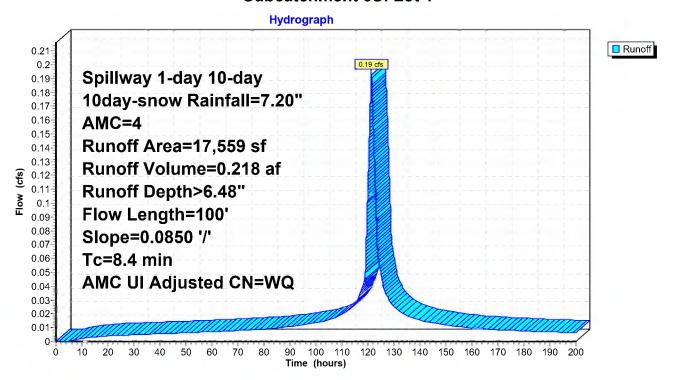
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

<i>F</i>	\rea (sf)	CN	Adj De	escription				
	8,038	76	98 Wo	Noods/grass comb., Fair, HSG C				
	8,038		We	Weighted Average				
	8,038	76	98 10	100.00% Pervious Area, AMC Adjusted				
Тс	Length	Slope	Velocit	y Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec	c) (cfs)				
11.1	100	0.1200	0.1	5	Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 2.88"			

Subcatchment 4S: (new Subcat)

Page 68

Summary for Subcatchment 5S: Lot 1


Runoff = 0.19 cfs @ 121.34 hrs, Volume= 0.218 af, Depth> 6.48"

Routed to Pond 1P: RG 1

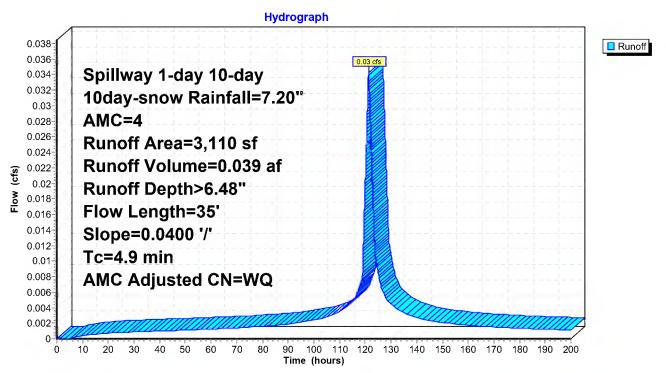
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

A	rea (sf)	CN .	Adj De	scription			
	7,115	76	98 W	ods/grass co	omb., Fair, HSG C		
	6,244	74	98 >7	>75% Grass cover, Good, HSG C			
	4,200	98	98 Un	connected re	oofs, HSG C		
	17,559		We	eighted Avera	age		
	13,359	75	98 76	76.08% Pervious Area, AMC Adjusted			
	4,200	98	98 23	92% Imperv	ious Area, AMC Adjusted		
	4,200		10	0.00% Uncor	nnected		
	_			_			
Tc	Length	Slope		, , ,	Description		
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)			
8.4	100	0.0850	0.2)	Sheet Flow,		
					Grass: Dense n= 0.240 P2= 2.88"		

Subcatchment 5S: Lot 1

Page 69

Summary for Subcatchment 6S: To Street


0.03 cfs @ 121.29 hrs, Volume= 0.039 af, Depth> 6.48" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

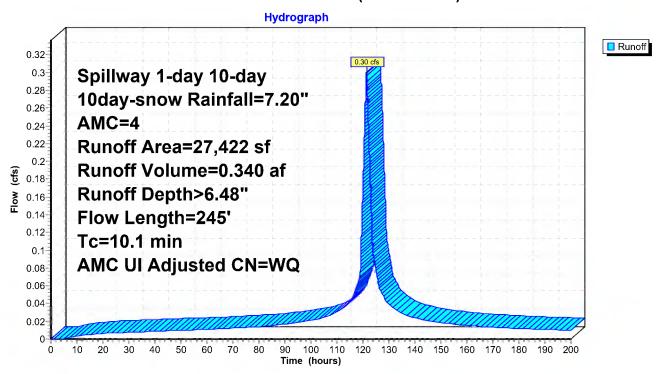
	Α	rea (sf)	CN /	Adj D	Description			
		268	74	98 >7	75% Grass cover, Good, HSG C			
*		1,339	61	98 S	Soil Amendment Area			
_		1,503	98	98 U	Unconnected roofs, HSG C			
		3,110		W	Veighted Average			
		1,607	63	98 51	1.67% Pervious Area, AMC Adjusted			
		1,503	98	98 48	48.33% Impervious Area, AMC Adjusted			
		1,503		10	00.00% Unconnected			
	Тс	Length	Slope	Veloc	city Capacity Description			
_	(min)	(feet)	(ft/ft)	(ft/se	ec) (cfs)	_		
	4.9	35	0.0400	0.1	12 Sheet Flow,			

Grass: Dense n= 0.240 P2= 2.88"

Subcatchment 6S: To Street

Page 70

Summary for Subcatchment 7S: (new Subcat)


Runoff = 0.30 cfs @ 121.36 hrs, Volume= 0.340 af, Depth> 6.48"

Routed to Pond 2P: RG 2

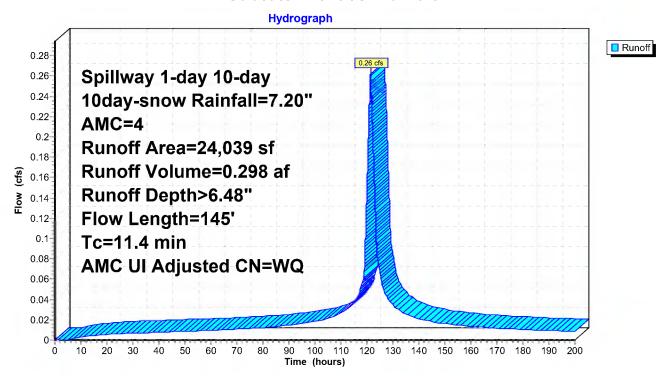
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

_	Δ	rea (sf)	CN	Adj De	scription				
		12,301	76	98 Wo	Voods/grass comb., Fair, HSG C				
*		9,418	65	98 Am	ended soils				
		0	74	98 >75	>75% Grass cover, Good, HSG C				
_		5,703	98	98 Un	Inconnected roofs, HSG C				
		27,422		We	ighted Avera	age			
		21,719	71	98 79.	20% Perviou	us Area, AMC Adjusted			
		5,703	98	98 20.	0.80% Impervious Area, AMC Adjusted				
		5,703		100	100.00% Unconnected				
	Тс	Length	Slope			Description			
_	(min)	(feet)	(ft/ft)	(ft/sec) (cfs)				
	9.1	100	0.0700	0.18	3	Sheet Flow,			
						Grass: Dense n= 0.240 P2= 2.88"			
	1.0	145	0.1300	2.5	2	Shallow Concentrated Flow,			
_						Short Grass Pasture Kv= 7.0 fps			
	10.1	245	Total						

Subcatchment 7S: (new Subcat)

Page 71

Summary for Subcatchment 8S: To North


Runoff = 0.26 cfs @ 121.38 hrs, Volume= 0.298 af, Depth> 6.48"

Routed to Pond 3P: RG 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

_	Α	rea (sf)	CN	Adj [Desc	ription				
		9,546	76	98 \	Woo	oods/grass comb., Fair, HSG C				
*		8,790	65	98 A	4mei	nded Soils				
		0	74	98 >	>75%	75% Grass cover, Good, HSG C				
		5,703	98	98 l	Unco	nnected ro	oofs, HSG C			
		24,039		1	Weig	hted Avera	age			
		18,336	71	98 7	76.28	3% Perviou	is Area, AMC Adjusted			
		5,703	98	98 2	23.72	23.72% Impervious Area, AMC Adjusted				
		5,703		•	100.0	00% Uncor	nected			
	Тс	Length	Slope	Velo	city	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/s	ec)	(cfs)				
	11.1	100	0.0430	0	.15		Sheet Flow,			
							Grass: Dense n= 0.240 P2= 2.88"			
	0.3	45	0.1400	2	.62		Shallow Concentrated Flow,			
_							Short Grass Pasture Kv= 7.0 fps			
	11 4	145	Total							

Subcatchment 8S: To North

Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023 Page 72

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 1P: RG 1

Inflow Area = 0.403 ac, 23.92% Impervious, Inflow Depth > 6.48" for 10day-snow event

Inflow = 0.19 cfs @ 121.34 hrs, Volume= 0.218 af

Outflow = 0.19 cfs @ 121.39 hrs, Volume= 0.197 af, Atten= 1%, Lag= 3.1 min

Discarded = 0.01 cfs @ 121.39 hrs, Volume= 0.107 af Primary = 0.18 cfs @ 121.39 hrs, Volume= 0.090 af

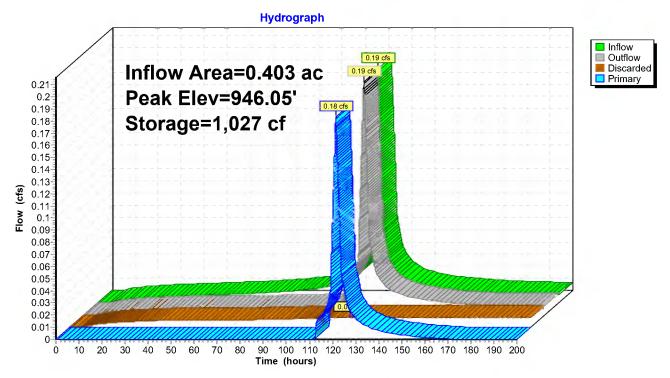
Routed to Pond 4P: Offsite to East

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 3 Peak Elev= 946.05' @ 121.39 hrs Surf.Area= 1,192 sf Storage= 1,027 cf

Plug-Flow detention time=624.1 min calculated for 0.197 af (91% of inflow)

Center-of-Mass det. time= 215.9 min (7,207.3 - 6,991.4)

Volume	Invert	: Avail.Sto	rage Storag	e Description	
#1	945.00	2,37	70 cf Custo	m Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
945.0	00	775	0	0	
946.0	00	1,170	973	973	
946.2	20	1,265	244	1,216	
947.0	00	1,620	1,154	2,370	
Device	Routing	Invert	Outlet Device	es	
#1	Discarded	945.00'	0.300 in/hr	Exfiltration over	Surface area
#2	Primary	946.00'	EOF, Cv= 2	.62 (C= 3.28)	
	•		Head (feet)	1.00 1.20 2.00	
			Width (feet)	5.00 10.00 65.0	00


Discarded OutFlow Max=0.01 cfs @ 121.39 hrs HW=946.05' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.18 cfs @ 121.39 hrs HW=946.05' (Free Discharge) 2=EOF (Weir Controls 0.18 cfs @ 0.69 fps)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 73

Pond 1P: RG 1

Printed 8/31/2023 Page 74

Priory - Haugo Soils Spillway 1-day 10-day 10da Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 1P: RG 1

Elevation	Discharge	Discarded	Primary	Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
945.00	0.00	0.00	0.00	946.02	0.06	0.01	0.05
945.02	0.01	0.01	0.00	946.04	0.15	0.01	0.14
945.04	0.01	0.01	0.00	946.06	0.28	0.01	0.27
945.06	0.01	0.01	0.00	946.08	0.44	0.01	0.43
945.08	0.01	0.01	0.00	946.10	0.63	0.01	0.62
945.10	0.01	0.01	0.00	946.12	0.85	0.01	0.84
945.12	0.01	0.01	0.00	946.14	1.11	0.01	1.10
945.14	0.01	0.01	0.00	946.16	1.39	0.01	1.38
945.16	0.01	0.01	0.00	946.18	1.71	0.01	1.70
945.18	0.01	0.01	0.00	946.20	2.06	0.01	2.05
945.20	0.01	0.01	0.00	946.22	2.45	0.01	2.44
945.22 945.24	0.01	0.01	0.00	946.24 946.26	2.88	0.01	2.87
	0.01 0.01	0.01 0.01	0.00 0.00	946.28	3.36 3.90	0.01	3.35 3.89
945.26 945.28	0.01	0.01	0.00	946.26	3.90 4.50	0.01 0.01	3.69 4.49
945.20	0.01	0.01	0.00	946.32	5.16	0.01	4.49 5.15
945.30	0.01	0.01	0.00	946.34	5.88	0.01	5.13
945.34	0.01	0.01	0.00	946.36	6.68	0.01	5.67 6.67
945.36	0.01	0.01	0.00	946.38	7.55	0.01	7.54
945.38	0.01	0.01	0.00	946.40	8.49	0.01	8.48
945.40	0.01	0.01	0.00	946.42	9.51	0.01	9.50
945.42	0.01	0.01	0.00	946.44	10.61	0.01	10.60
945.44	0.01	0.01	0.00	946.46	11.79	0.01	11.78
945.46	0.01	0.01	0.00	946.48	13.06	0.01	13.05
945.48	0.01	0.01	0.00	946.50	14.41	0.01	14.40
945.50	0.01	0.01	0.00	946.52	15.86	0.01	15.85
945.52	0.01	0.01	0.00	946.54	17.39	0.01	17.38
945.54	0.01	0.01	0.00	946.56	19.01	0.01	19.00
945.56	0.01	0.01	0.00	946.58	20.74	0.01	20.73
945.58	0.01	0.01	0.00	946.60	22.55	0.01	22.54
945.60	0.01	0.01	0.00	946.62	24.47	0.01	24.46
945.62	0.01	0.01	0.00	946.64	26.49	0.01	26.48
945.64	0.01	0.01	0.00	946.66	28.61	0.01	28.59
945.66	0.01	0.01	0.00	946.68	30.83	0.01	30.82
945.68	0.01	0.01	0.00	946.70	33.16	0.01	33.15
945.70	0.01	0.01	0.00	946.72	35.60	0.01	35.59
945.72	0.01	0.01	0.00	946.74	38.14	0.01	38.13
945.74	0.01	0.01	0.00	946.76	40.80	0.01	40.79
945.76	0.01	0.01	0.00	946.78	43.57	0.01	43.56
945.78	0.01	0.01	0.00	946.80	46.46	0.01	46.45
945.80	0.01	0.01	0.00	946.82	49.46	0.01	49.45
945.82	0.01	0.01	0.00	946.84	52.58	0.01	52.57
945.84	0.01	0.01	0.00	946.86	55.81	0.01	55.80
945.86	0.01	0.01	0.00	946.88	59.17	0.01	59.16
945.88	0.01	0.01	0.00	946.90	62.65	0.01	62.64
945.90	0.01	0.01	0.00	946.92	66.26	0.01	66.25
945.92	0.01	0.01	0.00	946.94	69.99	0.01	69.98
945.94	0.01	0.01	0.00	946.96	73.85	0.01	73.83
945.96	0.01	0.01	0.00	946.98	77.83	0.01	77.82
945.98	0.01	0.01	0.00	947.00	81.94	0.01	81.93
946.00	0.01	0.01	0.00				

Printed 8/31/2023 Page 75

Priory - Haugo Soils Spillway 1-day 10-day 10d Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1P: RG 1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
945.00	775	0	946.02	1,179	996
945.02	783	16	946.04	1,189	1,020
945.04	791	31	946.06	1,198	1,044
945.06	799	47	946.08	1,208	1,068
945.08	807	63	946.10	1,218	1,092
945.10	815	79	946.12	1,227	1,116
945.12	822	96	946.14	1,236	1,141
945.14	830	112	946.16	1,246	1,166
945.16	838	129	946.18	1,255	1,191
945.18	846	146	946.20	1,265	1,216
945.20	854	163	946.22	1,274	1,241
945.22	862	180	946.24	1,283	1,267
945.24	870	197	946.26	1,292	1,293
945.26	878	215	946.28	1,300	1,319
945.28	886	232	946.30	1,309	1,345
945.30	893	250	946.32	1,318	1,371
945.32	901	268	946.34	1,327	1,397
945.34	909	286	946.36	1,336	1,424
945.36	917	305	946.38	1,345	1,451
945.38	925	323	946.40	1,354	1,478
945.40	933	342	946.42	1,363	1,505
945.42	941	360	946.44	1,372	1,532
945.44	949	379	946.46	1,380	1,560
945.46	957	398	946.48	1,389	1,588
945.48	965	418	946.50	1,398	1,615
945.50	973	437	946.52	1,407	1,644
945.52	980	456 476	946.54	1,416	1,672
945.54	988	476	946.56	1,425	1,700
945.56	996 1,004	496 516	946.58	1,434	1,729
945.58 945.60	1,004 1,012	536	946.60 946.62	1,443 1,451	1,758 1,786
945.62	1,020	556	946.64	1,460	1,780
945.64	1,028	577	946.66	1,469	1,845
945.66	1,036	598	946.68	1,478	1,874
945.68	1,044	618	946.70	1,487	1,904
945.70	1,052	639	946.72	1,496	1,934
945.72	1,059	660	946.74	1,505	1,964
945.74	1,067	682	946.76	1,513	1,994
945.76	1,075	703	946.78	1,522	2,024
945.78	1,083	725	946.80	1,531	2,055
945.80	1,091	746	946.82	1,540	2,086
945.82	1,099	768	946.84	1,549	2,116
945.84	1,107	790	946.86	1,558	2,148
945.86	1,115	813	946.88	1,567	2,179
945.88	1,123	835	946.90	1,576	2,210
945.90	1,130	857	946.92	1,584	2,242
945.92	1,138	880	946.94	1,593	2,274
945.94	1,146	903	946.96	1,602	2,306
945.96	1,154	926	946.98	1,611	2,338
945.98	1,162	949	947.00	1,620	2,370
946.00	1,170	973			
			I		

Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023 Page 76

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 2P: RG 2

Inflow Area = 0.630 ac, 20.80% Impervious, Inflow Depth > 6.48" for 10day-snow event

Inflow = 0.30 cfs @ 121.36 hrs, Volume= 0.340 af

Outflow = 0.30 cfs @ 121.42 hrs, Volume= 0.310 af, Atten= 1%, Lag= 3.6 min

Discarded = 0.02 cfs @ 121.42 hrs, Volume= 0.229 af Primary = 0.28 cfs @ 121.42 hrs, Volume= 0.081 af

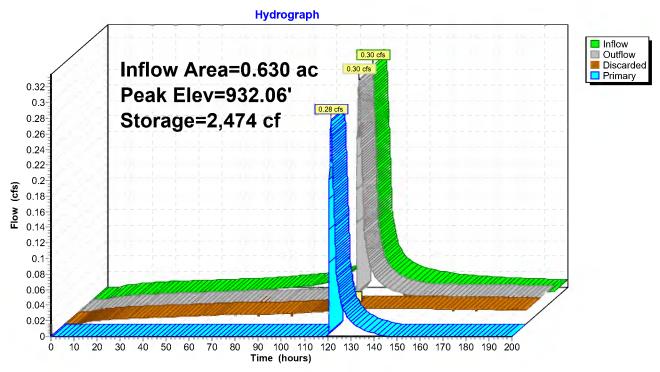
Routed to Pond 27P: out

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Peak Elev= 932.06' @ 121.42 hrs Surf.Area= 1,529 sf Storage= 2,474 cf

Plug-Flow detention time= 747.6 min calculated for 0.310 af (91% of inflow)

Center-of-Mass det. time= 360.3 min (7,353.0 - 6,992.7)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	930.00	0' 4,30	08 cf Custor	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
930.0	00	860	0	0	
931.0	00	1,240	1,050	1,050	
932.0	00	1,430	1,335	2,385	
932.2	20	1,760	319	2,704	
933.0	00	2,250	1,604	4,308	
Device	Routing	Invert	Outlet Device	es	
#1	Discarded	930.00'	0.600 in/hr E	Exfiltration over	Surface area
#2	Primary	932.00'	Custom We	ir/Orifice, Cv= 2.	.62 (C= 3.28)
			Head (feet)	1.00 1.20 2.00	
			Width (feet)	5.00 10.00 30.0	00


Discarded OutFlow Max=0.02 cfs @ 121.42 hrs HW=932.06' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.27 cfs @ 121.42 hrs HW=932.06' (Free Discharge) 2=Custom Weir/Orifice (Weir Controls 0.27 cfs @ 0.78 fps)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 77

Printed 8/31/2023 Page 78

Priory - Haugo Soils Spillway 1-day 10-day 10day
Prepared by Sathre-Bergquist, Inc
HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 2P: RG 2

- 1 (:	D' 1	D: 1 1	ъ: I
Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)
930.00	0.00	0.00	0.00
930.05	0.01	0.01	0.00
930.10	0.01	0.01	0.00
930.15	0.01	0.01	0.00
930.20	0.01	0.01	0.00
930.25	0.01	0.01	0.00
930.30	0.01	0.01	0.00
930.35	0.01	0.01	0.00
930.40	0.01	0.01	0.00
930.45 930.50	0.01 0.01	0.01 0.01	0.00 0.00
930.55	0.01	0.01	0.00
930.60	0.01	0.02	0.00
930.65	0.02	0.02	0.00
930.70	0.02	0.02	0.00
930.75	0.02	0.02	0.00
930.80	0.02	0.02	0.00
930.85	0.02	0.02	0.00
930.90	0.02	0.02	0.00
930.95	0.02	0.02	0.00
931.00	0.02	0.02	0.00
931.05	0.02	0.02	0.00
931.10 931.15	0.02 0.02	0.02 0.02	0.00 0.00
931.13	0.02	0.02	0.00
931.25	0.02	0.02	0.00
931.30	0.02	0.02	0.00
931.35	0.02	0.02	0.00
931.40	0.02	0.02	0.00
931.45	0.02	0.02	0.00
931.50	0.02	0.02	0.00
931.55	0.02	0.02	0.00
931.60	0.02	0.02	0.00
931.65 931.70	0.02 0.02	0.02 0.02	0.00 0.00
931.75	0.02	0.02	0.00
931.80	0.02	0.02	0.00
931.85	0.02	0.02	0.00
931.90	0.02	0.02	0.00
931.95	0.02	0.02	0.00
932.00	0.02	0.02	0.00
932.05	0.22	0.02	0.20
932.10	0.64	0.02	0.62
932.15	1.26	0.02	1.24
932.20 932.25	2.07 3.10	0.02 0.02	2.05 3.07
932.25	4.33	0.02	4.31
932.35	5.79	0.03	5.76
932.40	7.48	0.03	7.46
932.45	9.42	0.03	9.39
932.50	11.61	0.03	11.58

Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)
932.55	14.05	0.03	14.03
932.60	16.77	0.03	16.74
932.65	19.77	0.03	19.74
932.70	23.05	0.03	23.02
932.75	26.62	0.03	26.59
932.80	30.49	0.03	30.46
932.85	34.68	0.03	34.65
932.90	39.18	0.03	39.15
932.95	44.00	0.03	43.97
933.00	49.16	0.03	49.13

Storage

3,358

3,457

3,558

3,661

3,765

3,870

3,977

4,086

4,196

4,308

(cubic-feet)

Surface

(sq-ft)

1,974

2,005

2,036

2,066

2,097

2,127

2,158

2,189

2,219

2,250

Printed 8/31/2023 Page 79

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 2P: RG 2

Elevation

(feet)

932.55

932.60

932.65

932.70

932.75

932.80

932.85

932.90

932.95

933.00

		•
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
930.00	860	0
930.05	879	43
930.10	898	88
930.15	917	133
930.20	936	180
930.25 930.30	955 974	227 275
930.35	993	324
930.40	1,012	374
930.45	1,031	425
930.50	1,050	478
930.55	1,069	530
930.60	1,088	584
930.65 930.70	1,107	639 695
930.75	1,126 1,145	752
930.80	1,164	810
930.85	1,183	868
930.90	1,202	928
930.95	1,221	988
931.00	1,240	1,050
931.05 931.10	1,249 1,250	1,112
931.15	1,259 1,268	1,175 1,238
931.20	1,278	1,302
931.25	1,288	1,366
931.30	1,297	1,431
931.35	1,307	1,496
931.40	1,316	1,561
931.45 931.50	1,326 1,335	1,627 1,694
931.55	1,344	1,761
931.60	1,354	1,828
931.65	1,363	1,896
931.70	1,373	1,965
931.75	1,383	2,033
931.80	1,392	2,103
931.85 931.90	1,402 1,411	2,173 2,243
931.95	1,421	2,314
932.00	1,430	2,385
932.05	1,512	2,459
932.10	1,595	2,536
932.15	1,677	2,618
932.20 932.25	1,760 1,701	2,704
932.30	1,791 1,821	2,793 2,883
932.35	1,852	2,975
932.40	1,882	3,068
932.45	1,913	3,163
932.50	1,944	3,260

Spillway 1-day 10-day 10day-snow Rainfall=7.20", AMC=4

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023 Page 80

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 3P: RG 3

Inflow Area = 0.552 ac, 23.72% Impervious, Inflow Depth > 6.48" for 10day-snow event

Inflow = 0.26 cfs @ 121.38 hrs, Volume= 0.298 af

Outflow = 0.26 cfs @ 121.44 hrs, Volume= 0.275 af, Atten= 0%, Lag= 3.4 min

Discarded = 0.02 cfs @ 121.44 hrs, Volume= 0.181 af Primary = 0.24 cfs @ 121.44 hrs, Volume= 0.094 af

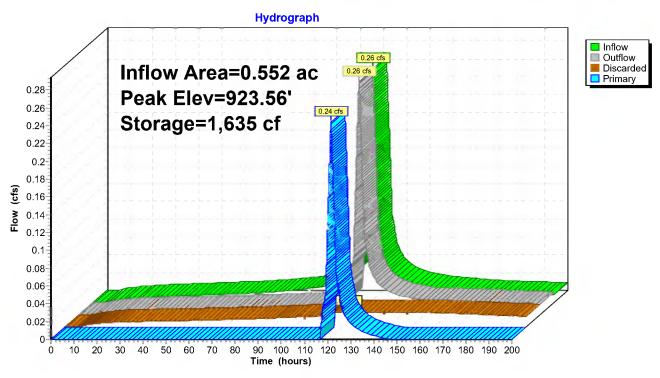
Routed to Pond 27P: out

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 923.56' @ 121.44 hrs Surf.Area= 1,249 sf Storage= 1,635 cf

Plug-Flow detention time=685.2 min calculated for 0.275 af (92% of inflow)

Center-of-Mass det. time= 344.4 min (7,338.0 - 6,993.6)

Volume	Invert	Avail.St	orage Stora	ge Description		
#1	921.50'	3,8	337 cf Custo	om Stage Data (Co	onic)Listed below	(Recalc)
Elevation	ı Sı	ırf.Area	Inc.Store	Cum.Store	Wet.Area	
(feet)	1	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
921.50)	440	0	0	440	
922.00)	630	266	266	634	
922.30)	725	203	469	733	
922.50)	800	152	622	811	
923.00)	890	422	1,044	914	
923.50)	1,210	523	1,567	1,240	
923.90)	1,500	541	2,108	1,534	
924.00)	1,575	154	2,262	1,610	
925.00)	1,575	1,575	3,837	1,751	
Device I	Routing	Invert	Outlet Dev	ices		
#1 I	Discarded	921.50	0.600 in/hı	Exfiltration over	Surface area	
#2 I	⊃rimary	923.50	Custom W	eir/Orifice, Cv= 2.0	62 (C= 3.28)	
	•		Head (feet)	2.00 2.25 2.50 2	2.75	
Width (feet) 5.00 10.00 40.00 50.00						


Discarded OutFlow Max=0.02 cfs @ 121.44 hrs HW=923.56' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.23 cfs @ 121.44 hrs HW=923.56' (Free Discharge) 2=Custom Weir/Orifice (Weir Controls 0.23 cfs @ 0.76 fps)

Printed 8/31/2023 Page 81

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Pond 3P: RG 3

Discharge

(cfs)

18.98

24.10 29.87

36.27

43.30

49.10

53.90

58.18

62.12

65.78

69.23

72.50

75.61

78.60

81.47

84.23

86.91

89.50

92.02

94.47

Discarded

(cfs)

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

Printed 8/31/2023 Page 82

Primary

(cfs)

18.96

24.08

29.85

36.25

43.28

49.08

53.88

58.16

62.09

65.76

69.21

72.47

75.59

78.58

81.44

84.21

86.89

89.48

92.00

94.44

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 3P: RG 3

			.	J
Elevation (feet)	Discharge	Discarded (cfs)	Primary	Elevation
	(cfs)		(cfs)	(feet)
921.50	0.00	0.00	0.00	924.05
921.55	0.01	0.01	0.00	924.10
921.60	0.01	0.01	0.00	924.15
921.65	0.01	0.01	0.00	924.20
921.70	0.01	0.01	0.00	924.25
921.75	0.01	0.01	0.00	924.30
921.80	0.01	0.01	0.00	924.35
921.85	0.01	0.01	0.00	924.40
921.90	0.01	0.01	0.00	924.45
921.95	0.01	0.01	0.00	924.50
922.00	0.01	0.01	0.00	924.55
922.05	0.01	0.01	0.00	924.60
922.10	0.01	0.01	0.00	924.65
922.15	0.01	0.01	0.00	924.70
922.20	0.01	0.01	0.00	924.75
922.25	0.01	0.01	0.00	924.80
922.30	0.01	0.01	0.00	924.85
922.35	0.01	0.01	0.00	924.90
922.40	0.01	0.01	0.00	924.95
922.45	0.01	0.01	0.00	925.00
922.50	0.01	0.01	0.00	
922.55	0.01	0.01	0.00	
922.60	0.01	0.01	0.00	
922.65	0.01	0.01	0.00	
922.70	0.01	0.01	0.00	
922.75	0.01	0.01	0.00	
922.80	0.01	0.01	0.00	
922.85	0.01	0.01	0.00	
922.90	0.01	0.01	0.00	
922.95	0.01	0.01	0.00	
923.00	0.01	0.01	0.00	
923.05	0.01	0.01	0.00	
923.10	0.01	0.01	0.00	
923.15	0.01	0.01	0.00	
923.20	0.01	0.01	0.00	
923.25	0.01	0.01	0.00	
923.30	0.01	0.01	0.00	
923.35	0.02	0.02	0.00	
923.40	0.02	0.02	0.00	
923.45	0.02	0.02	0.00	
923.50	0.02	0.02	0.00	
923.55	0.22	0.02	0.20	
923.60	0.62	0.02	0.60	
923.65	1.20	0.02	1.18	
923.70	1.95	0.02	1.93	
923.75	2.88	0.02	2.87	
923.80	4.08	0.02	4.06	
923.85	5.72	0.02	5.70	
923.90	7.96	0.02	7.94	
923.95	10.87	0.02	10.85	
924.00	14.54	0.02	14.51	

Printed 8/31/2023 Page 83

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 3P: RG 3

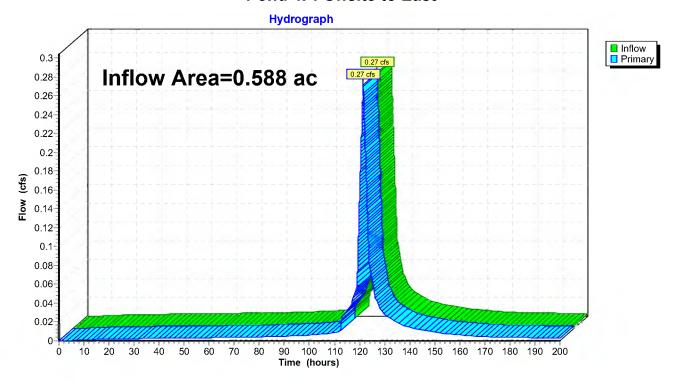
Elevation Surface (sq-ft) (cubic-feet) (feet) (sq-ft) (cubic-feet) (ge-ft) (sq-ft) (sq-ft) (cubic-feet) (ge-ft) (sq-ft) (sq-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (ge-ft) (g						
921.50	Elevation	Surface	Storage	Elevation	Surface	Storage
921.55	(feet)	(s <u>q</u> -ft)	(cubic-feet)	(feet)	(s <u>q</u> -ft)	(cubic-feet)
921.60	921.50	440	0	924.05	1,575	2,340
921.65	921.55	457	22	924.10	1,575	2,419
921.65	921.60	475	46	924.15		2,498
921.75	921.65	493	70	924.20	1,575	2,577
921.75	921.70	512	95	924.25		
921.80 550 148 924.35 1.575 2.813 921.85 569 176 924.40 1.575 2.892 921.90 589 205 924.45 1.575 2.970 921.95 609 235 924.55 1.575 3.049 922.00 630 266 924.55 1.575 3.207 922.10 661 331 924.65 1.575 3.207 922.15 677 364 924.70 1.575 3.364 922.20 693 398 924.60 1.575 3.364 922.20 693 398 924.85 1.575 3.364 922.20 693 398 924.85 1.575 3.600 922.35 709 433 994.80 1.575 3.592 922.30 725 469 924.85 1.575 3.600 922.35 743 506 924.90 1.575 3.600 922.35 743 506 924.90 1.575 3.679 922.40 762 544 924.95 1.575 3.679 922.40 762 544 924.95 1.575 3.798 922.40 762 544 924.95 1.575 3.798 922.25 800 622 922.60 818 702 922.55 809 662 922.60 818 702 922.55 809 662 922.80 853 870 922.85 862 912 922.90 872 956 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.15 981 1,184 923.25 1,044 1.285 923.30 1,076 1.338 923.35 1,109 1.393 923.40 1,142 1,449 923.45 1,176 1.507 923.55 1,245 1,628 923.30 1,210 1.567 923.55 1,245 1,628 923.70 1,351 1,823 923.70 1,351 1,823 923.70 1,351 1,823 923.70 1,351 1,823 923.80 1,425 1,962 923.85 1,462 2,034 923.95 1,537 2,184	921.75	531	121			
921.85 569 176 924.40 1.575 2.892 921.90 589 205 924.45 1.575 2.970 921.95 609 235 924.50 1.575 3.049 922.00 630 266 924.55 1.575 3.049 922.05 645 298 924.60 1.575 3.285 922.10 661 331 924.65 1.575 3.285 922.15 677 364 924.70 1.575 3.285 922.20 693 398 924.75 1.575 3.364 922.20 693 398 924.75 1.575 3.443 922.25 709 433 924.80 1.575 3.433 922.30 725 469 924.85 1.575 3.600 922.30 725 469 924.85 1.575 3.600 922.30 725 469 924.85 1.575 3.600 922.40 762 544 924.90 1.575 3.679 922.40 762 544 924.95 1.575 3.679 922.40 762 544 924.95 1.575 3.679 922.40 762 544 924.95 1.575 3.679 922.50 800 622 922.55 809 662 922.60 818 702 925.50 800 622 922.55 862 744 922.70 835 785 922.75 844 827 922.80 853 870 922.80 853 870 922.80 853 870 923.30 990 1.044 923.05 920 1.089 923.10 950 1.366 923.20 1.099 923.10 950 1.366 923.20 1.099 923.315 981 1.184 923.20 1.012 1.234 923.25 1.044 1.285 923.35 1.109 1.393 923.40 1.142 1.244 923.35 1.109 1.393 923.40 1.142 1.244 923.35 1.109 1.393 923.40 1.142 1.244 923.55 1.245 1.628 923.55 1.245 1.628 923.50 1.280 1.591 923.55 1.245 1.628 923.75 1.388 1.891 923.80 1.425 1.962 923.85 1.462 2.034 923.90 1.500 2.108 923.95 1.537 2.184	921.80	550	148	924.35	1,575	
921.95 609 235 924.50 1,575 3,049 922.00 630 266 924.55 1,575 3,128 922.05 645 298 924.60 1,575 3,285 922.10 661 331 924.65 1,575 3,285 922.15 677 364 924.70 1,575 3,364 922.20 693 398 924.75 1,575 3,364 922.20 693 398 924.75 1,575 3,443 922.25 709 433 924.80 1,575 3,522 922.30 725 469 924.90 1,575 3,600 922.35 743 506 924.90 1,575 3,679 922.40 762 544 924.95 1,575 3,679 922.45 781 582 925.00 1,575 3,758 922.45 781 582 925.00 1,575 3,758 922.45 781 582 925.00 1,575 3,837 922.80 800 622 922.50 800 622 922.50 800 622 922.50 800 622 922.60 818 702 922.65 826 744 922.70 835 785 922.75 844 827 922.80 853 870 922.85 862 912 922.90 872 956 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.25 1,044 1,285 923.35 1,176 1,507 923.55 1,245 1,628 923.06 1,280 1,691 923.65 1,315 1,756 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184	921.85	569	176	924.40	1,575	2,892
922.00 630 266 924.55 1,575 3,128 922.05 645 298 924.60 1,575 3,207 922.10 661 331 924.65 1,575 3,285 922.15 677 364 924.70 1,575 3,364 922.20 693 398 924.75 1,575 3,443 922.25 709 433 924.80 1,575 3,522 922.30 725 469 924.85 1,575 3,600 922.35 743 506 924.90 1,575 3,679 922.40 762 544 924.95 1,575 3,679 922.40 762 544 924.95 1,575 3,679 922.45 781 582 925.00 1,575 3,758 922.45 781 582 925.00 1,575 3,758 922.55 809 662 922.55 809 662 922.60 818 702 922.55 826 744 922.70 835 785 922.75 844 827 922.80 853 870 922.85 862 912 922.90 872 956 922.90 872 956 923.10 950 1,136 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.55 1,245 1,628 923.50 1,210 1,567 923.55 1,245 1,628 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184	921.90	589	205	924.45	1,575	2,970
922.05 645 298 924.60 1,575 3,207 922.10 661 331 924.65 1,575 3,285 922.15 677 364 924.70 1,575 3,364 922.20 693 398 924.75 1,575 3,364 922.20 709 433 924.80 1,575 3,522 922.30 725 469 924.85 1,575 3,600 922.35 743 506 924.90 1,575 3,679 922.40 762 544 924.95 1,575 3,679 922.45 781 582 925.00 1,575 3,758 922.45 781 582 925.00 1,575 3,837 922.50 800 622 922.50 800 622 922.50 818 702 922.65 826 744 922.70 835 785 922.75 844 827 922.80 853 870 922.85 862 912 922.90 872 956 922.90 872 956 922.90 872 956 922.91 1,366 923.10 950 1,136 923.15 981 1,184 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.50 1,210 1,567 923.55 1,245 1,628 923.70 1,351 1,823 923.80 1,425 1,962 923.85 1,462 2,034 923.80 1,500 2,108 923.80 1,425 1,962 923.85 1,537 2,184	921.95	609	235	924.50	1,575	3,049
922.10 661 331 924.65 1,575 3,285 922.15 677 364 924.70 1,575 3,364 922.20 693 398 924.70 1,575 3,344 922.25 709 433 924.80 1,575 3,522 922.30 725 469 924.85 1,575 3,600 922.35 743 506 924.90 1,575 3,679 922.40 762 544 924.95 1,575 3,758 922.45 781 582 925.00 1,575 3,758 922.40 762 544 924.95 1,575 3,758 922.40 762 544 924.95 1,575 3,758 922.40 762 544 924.95 1,575 3,758 922.40 762 544 924.95 1,575 3,758 922.40 762 544 924.95 1,575 3,837 922.50 800 622 922.55 809 662 922.66 826 744 922.70 835 785 922.70 835 785 922.75 844 827 922.80 853 870 922.85 862 912 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.50 1,210 1,567 923.50 1,210 1,567 923.50 1,210 1,567 923.50 1,210 1,567 923.50 1,210 1,567 923.50 1,210 1,567 923.50 1,210 1,567 923.50 1,210 1,567 923.50 1,210 1,567 923.50 1,245 1,628 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184	922.00	630	266	924.55	1,575	3,128
922.15 677 364 924.70 1,575 3,364 922.20 693 398 924.75 1,575 3,443 922.25 709 433 924.80 1,575 3,522 922.30 725 469 924.85 1,575 3,600 922.35 743 506 924.90 1,575 3,679 922.40 762 544 924.95 1,575 3,679 922.45 781 582 925.00 1,575 3,758 922.45 781 582 925.00 1,575 3,758 922.50 800 622 922.50 800 622 922.55 809 662 922.60 818 702 922.65 826 744 922.70 835 785 922.77 835 785 922.80 853 870 922.85 862 912 922.90 872 956 922.90 872 956 922.91 9872 956 923.00 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.55 1,245 1,628 923.50 1,210 1,567 923.55 1,245 1,628 923.70 1,351 1,823 923.70 1,351 1,823 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,602 2,108 923.95 1,537 2,184	922.05	645	298	924.60	1,575	3,207
922.20 693 398 924.75 1,575 3,443 922.25 709 433 924.80 1,575 3,522 922.30 725 469 924.85 1,575 3,600 922.35 743 506 924.90 1,575 3,679 922.40 762 544 924.95 1,575 3,679 922.45 781 582 925.00 1,575 3,758 922.50 800 622 922.55 809 662 922.60 818 702 922.65 826 744 922.70 835 785 922.77 835 785 922.78 844 827 922.80 853 870 922.92 85 862 912 922.90 872 956 922.91 969 962 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.80 1,500 2,108 923.90 1,500 2,108 923.90 1,500 2,108 923.90 1,500 2,108 923.95 1,537 2,184	922.10	661	331	924.65	1,575	3,285
922.25 709 433 924.80 1,575 3,522 922.30 725 469 924.85 1,575 3,600 922.35 743 506 924.90 1,575 3,679 922.40 762 544 924.95 1,575 3,758 922.45 781 582 925.00 1,575 3,837 922.50 800 622 922.55 809 662 922.60 818 702 922.55 826 744 922.70 835 785 922.77 835 862 912 922.80 853 870 922.85 862 912 922.90 872 956 922.90 872 956 922.91 1,36 923.10 950 1,136 923.15 981 1,000 923.00 990 1,044 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.55 1,245 1,628 923.50 1,210 1,567 923.55 1,245 1,628 923.70 1,351 1,823 923.70 1,351 1,823 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.80 1,500 2,108 923.90 1,500 2,108 923.90 1,500 2,108 923.90 1,500 2,108 923.90 1,500 2,108 923.90 1,500 2,108	922.15	677	364	924.70	1,575	3,364
922.30	922.20			924.75	1,575	3,443
922.35				924.80	1,575	3,522
922.40 762 544 924.95 1,575 3,758 922.45 781 582 925.00 1,575 3,837 922.50 800 622 922.55 809 662 922.60 818 702 922.65 826 744 922.70 835 785 922.75 844 827 922.80 853 870 922.85 862 912 922.90 872 956 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.90 1,500 2,108 923.90 1,500 2,108 923.90 1,500 2,108 923.95 1,537 2,184						
922.45						
922.50						
922.55				925.00	1,575	3,837
922.60 818 702 922.65 826 744 922.70 835 785 922.75 844 827 922.80 853 870 922.85 862 912 922.90 872 956 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,915 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.90 1,500 2,108 923.90 1,500 2,108						
922.65 826 744 922.70 835 785 922.75 844 827 922.80 853 870 922.85 862 912 922.90 872 956 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
922.70						
922.75 844 827 922.80 853 870 922.85 862 912 922.90 872 956 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.85 1,462 2,034 923.95 1,500 2,108 923.95 1,537 2,184						
922.80 853 870 922.85 862 912 922.90 872 956 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
922.85 862 912 922.90 872 956 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.95 1,537 2,184						
922.90 872 956 922.95 881 1,000 923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.70 1,351 1,756 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.95 1,537 2,184						
922.95						
923.00 890 1,044 923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.05 920 1,089 923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.10 950 1,136 923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.80 1,425 1,962 923.90 1,500 2,108 923.90 1,500 2,108 923.95 1,537 2,184						
923.15 981 1,184 923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.20 1,012 1,234 923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.25 1,044 1,285 923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.30 1,076 1,338 923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.35 1,109 1,393 923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.90 1,500 2,108 923.95 1,537 2,184						
923.40 1,142 1,449 923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.45 1,176 1,507 923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.50 1,210 1,567 923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.55 1,245 1,628 923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.60 1,280 1,691 923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.65 1,315 1,756 923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184						
923.70 1,351 1,823 923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184		1,315				
923.75 1,388 1,891 923.80 1,425 1,962 923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184	923.70					
923.85 1,462 2,034 923.90 1,500 2,108 923.95 1,537 2,184	923.75					
923.90 1,500 2,108 923.95 1,537 2,184						
923.95 1,537 2,184						
924.00 1,575 2,262						
	924.00	1,575	2,262			

Printed 8/31/2023 Page 84

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 4P: Offsite to East

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 0.588 ac, 16.41% Impervious, Inflow Depth > 3.88" for 10day-snow event

Inflow = 0.27 cfs @ 121.38 hrs, Volume= 0.190 af

Primary = 0.27 cfs @ 121.38 hrs, Volume= 0.190 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 4P: Offsite to East

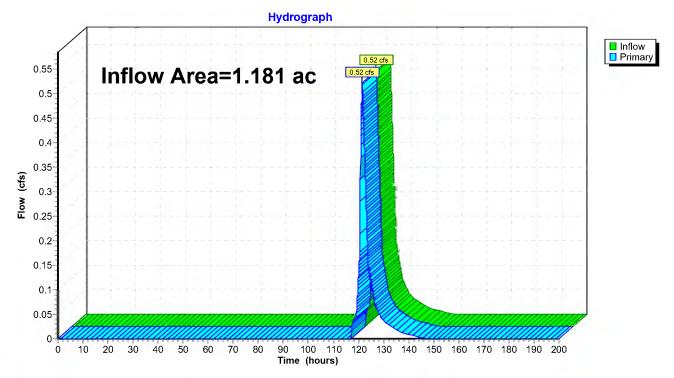
Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023 Page 85

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 27P: out

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 1.181 ac, 22.16% Impervious, Inflow Depth = 1.77" for 10day-snow event

Inflow = 0.52 cfs @ 121.43 hrs, Volume= 0.175 af

Primary = 0.52 cfs @ 121.43 hrs, Volume= 0.175 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 27P: out

Priory - Haugo Soils

MSE 24-hr 3 100-Year Rainfall=7.41"

Prepared by Sathre-Bergquist, Inc

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 86

Time span=0.00-200.00 hrs, dt=0.04 hrs, 5001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment4S: (new Subcat)

Runoff Area=8,038 sf 0.00% Impervious Runoff Depth=4.62"

Flow Length=100' Slope=0.1200 '/' Tc=11.1 min CN=76 Runoff=1.24 cfs 0.071 af

Subcatchment5S: Lot 1Runoff Area=17,559 sf 23.92% Impervious Runoff Depth=5.15"

Flow Length=100' Slope=0.0850 '/' Tc=8.4 min UI Adjusted CN=WQ Runoff=3.23 cfs 0.173 af

Subcatchment6S: To StreetRunoff Area=3,110 sf 48.33% Impervious Runoff Depth=5.14"
Flow Length=35' Slope=0.0400 '/' Tc=4.9 min CN=WQ Runoff=0.62 cfs 0.031 af

Subcatchment7S: (new Subcat)Runoff Area=27,422 sf 20.80% Impervious Runoff Depth=4.74"
Flow Length=245' Tc=10.1 min UI Adjusted CN=WQ Runoff=4.34 cfs 0.249 af

Subcatchment8S: To NorthRunoff Area=24,039 sf 23.72% Impervious Runoff Depth=4.79"
Flow Length=145' Tc=11.4 min UI Adjusted CN=WQ Runoff=3.63 cfs 0.220 af

Pond 1P: RG 1 Peak Elev=946.25' Storage=1,280 cf Inflow=3.23 cfs 0.173 af Discarded=0.01 cfs 0.035 af Primary=3.10 cfs 0.139 af Outflow=3.11 cfs 0.173 af

Pond 2P: RG 2 Peak Elev=932.30' Storage=2,877 cf Inflow=4.34 cfs 0.249 af Discarded=0.03 cfs 0.083 af Primary=4.22 cfs 0.166 af Outflow=4.25 cfs 0.249 af

Pond 3P: RG 3 Peak Elev=923.78' Storage=1,933 cf Inflow=3.63 cfs 0.220 af Discarded=0.02 cfs 0.058 af Primary=3.54 cfs 0.162 af Outflow=3.56 cfs 0.220 af

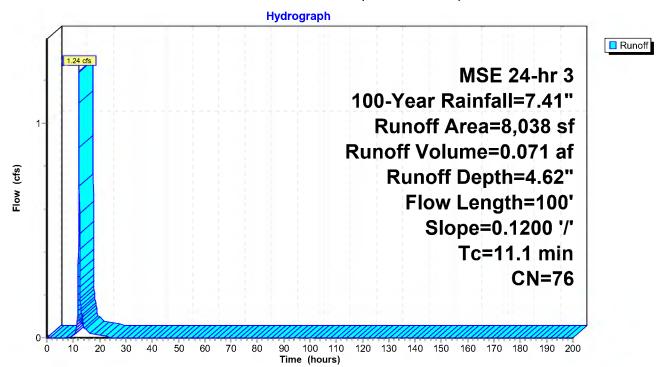
Pond 4P: Offsite to East Inflow=4.33 cfs 0.210 af Primary=4.33 cfs 0.210 af

Pond 27P: outInflow=7.75 cfs 0.328 af
Primary=7.75 cfs 0.328 af

Total Runoff Area = 1.840 ac Runoff Volume = 0.744 af Average Runoff Depth = 4.85" 78.66% Pervious = 1.448 ac 21.34% Impervious = 0.393 ac

Page 87

Summary for Subcatchment 4S: (new Subcat)


Runoff = 1.24 cfs @ 12.19 hrs, Volume= 0.071 af, Depth= 4.62"

Routed to Pond 4P: Offsite to East

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 100-Year Rainfall=7.41"

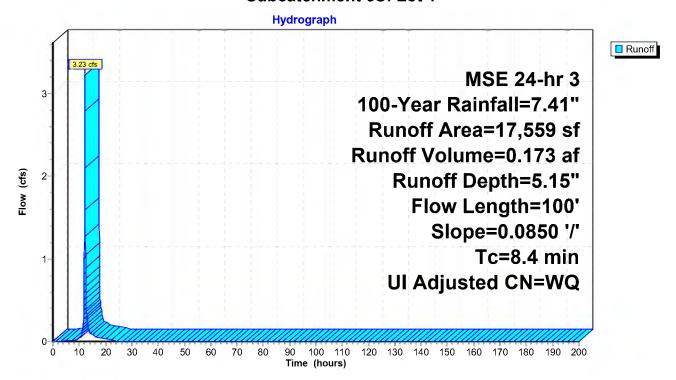
A	rea (sf)	CN I	Description						
	8,038	76 \	76 Woods/grass comb., Fair, HSG C						
	8,038	76 ·	76 100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
11.1	100	0.1200	0.15		Sheet Flow, Woods: Light underbrush	n= 0.400	P2= 2.88"		

Subcatchment 4S: (new Subcat)

Page 88

Summary for Subcatchment 5S: Lot 1

Runoff = 3.23 cfs @ 12.16 hrs, Volume= 0.173 af, Depth= 5.15"


Routed to Pond 1P: RG 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 100-Year Rainfall=7.41"

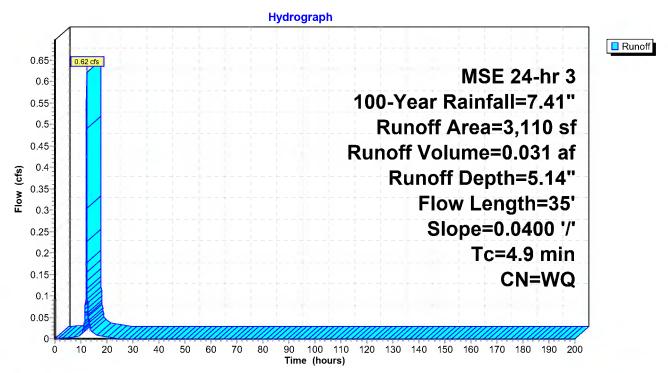
A	rea (sf)	CN /	Adj De	Description				
	7,115	76	76 W	Woods/grass comb., Fair, HSG C				
	6,244	74	74 >7	>75% Grass cover, Good, HSG C				
	4,200	98	98 Ur	Unconnected roofs, HSG C				
	17,559		W	Weighted Average				
	13,359	75	75 76	76.08% Pervious Area				
	4,200	98	98 23	23.92% Impervious Area				
	4,200		10	0.00% Uncor	nnected			
Тс	Length	Slope		, ,	Description			
(min)	(feet)	(ft/ft)	(ft/sed	c) (cfs)				
8.4	100	0.0850	0.2	0	Sheet Flow,			

Subcatchment 5S: Lot 1

Grass: Dense n= 0.240 P2= 2.88"

Page 89

Summary for Subcatchment 6S: To Street


Runoff = 0.62 cfs @ 12.12 hrs, Volume= 0.031 af, Depth= 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 100-Year Rainfall=7.41"

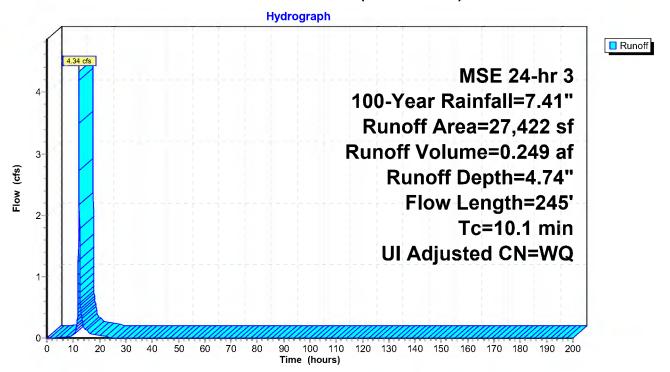
	Α	rea (sf)	CN I	Description						
		268	74							
*		1,339	61	Soil Amendment Area						
		1,503	98	Jnconnected roofs, HSG C						
		3,110	1	Weighted A	verage					
		1,607	63	51.67% Pervious Area						
		1,503	98 4	48.33% Impervious Area						
		1,503	,	100.00% U	nconnected	k				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	4.9	35	0.0400	0.12		Sheet Flow,				

Grass: Dense n= 0.240 P2= 2.88"

Subcatchment 6S: To Street

Page 90

Summary for Subcatchment 7S: (new Subcat)


Runoff = 4.34 cfs @ 12.18 hrs, Volume= 0.249 af, Depth= 4.74"

Routed to Pond 2P: RG 2

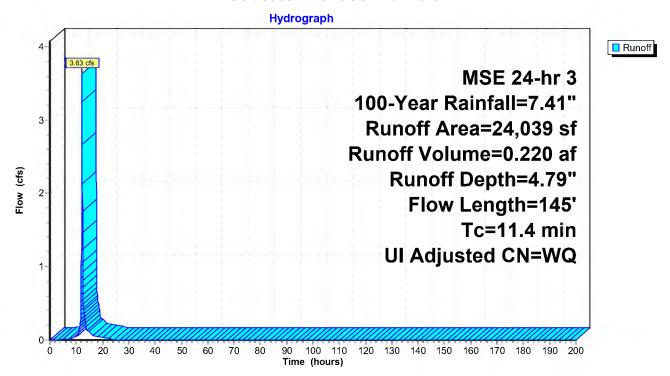
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 100-Year Rainfall=7.41"

_	Δ	rea (sf)	CN	Adj D	Desc	ription				
		12,301	76	76 V	Voo	ds/grass co	omb., Fair, HSG C			
*		9,418	65	65 A	Amer	nded soils				
		0	74	>	>75% Grass cover, Good, HSG C					
		5,703	98	98 L	Unconnected roofs, HSG C					
		27,422		٧	Veig	hted Avera	age			
		21,719	71	71 7	9.20	9.20% Pervious Area				
		5,703	98	98 2	20.80% Impervious Area					
		5,703		1	100.00% Unconnected					
	Тс	Length	Slope	Veloc	city	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/se	ec)	(cfs)				
	9.1	100	0.0700	0.	.18		Sheet Flow,			
							Grass: Dense n= 0.240 P2= 2.88"			
	1.0	145	0.1300	2.	.52		Shallow Concentrated Flow,			
_							Short Grass Pasture Kv= 7.0 fps			
	10.1	245	Total							

Subcatchment 7S: (new Subcat)

Page 91

Summary for Subcatchment 8S: To North


Runoff = 3.63 cfs @ 12.19 hrs, Volume= 0.220 af, Depth= 4.79"

Routed to Pond 3P: RG 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs MSE 24-hr 3 100-Year Rainfall=7.41"

_	Α	rea (sf)	CN	Adj	Desc	ription				
		9,546	76	76	Woo	ds/grass co	omb., Fair, HSG C			
*		8,790	65	65	Ame	nded Soils				
		0	74		>75%	% Grass co	ver, Good, HSG C			
_		5,703	98	98	Unco	Unconnected roofs, HSG C				
		24,039			Weig	hted Avera	age			
		18,336	71	71	76.28	6.28% Pervious Area				
		5,703	98	98	23.72	23.72% Impervious Area				
		5,703			100.0	100.00% Unconnected				
	Тс	Length	Slope	Vel	ocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/	sec)	(cfs)				
	11.1	100	0.0430		0.15		Sheet Flow,			
							Grass: Dense n= 0.240 P2= 2.88"			
	0.3	45	0.1400		2.62		Shallow Concentrated Flow,			
_							Short Grass Pasture Kv= 7.0 fps			
	11.4	145	Total							

Subcatchment 8S: To North

Printed 8/31/2023

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 92

Summary for Pond 1P: RG 1

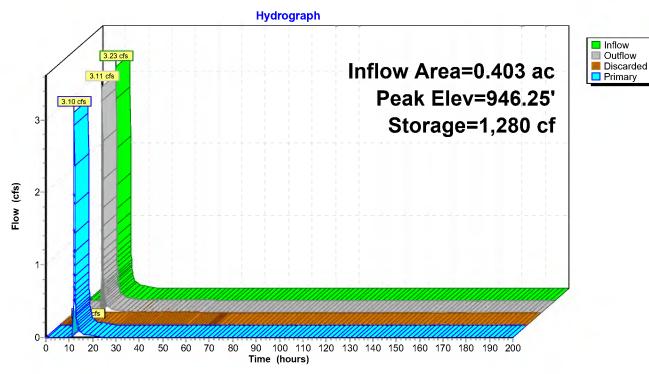
Inflow Area = 0.403 ac, 23.92% Impervious, Inflow Depth = 5.15" for 100-Year event
Inflow = 3.23 cfs @ 12.16 hrs, Volume= 0.173 af
Outflow = 3.11 cfs @ 12.17 hrs, Volume= 0.173 af, Atten= 3%, Lag= 0.8 min
Discarded = 0.01 cfs @ 12.17 hrs, Volume= 0.035 af
Primary = 3.10 cfs @ 12.17 hrs, Volume= 0.139 af

Routed to Pond 4P: Offsite to East

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 3 Peak Elev= 946.25' @ 12.17 hrs Surf.Area= 1,287 sf Storage= 1,280 cf

Plug-Flow detention time= 251.1 min calculated for 0.173 af (100% of inflow) Center-of-Mass det. time= 251.0 min (1,030.9 - 779.9)

Volume	Invert	Avail.Sto	rage Stora	ge Description	
#1	945.00'	2,37	70 cf Cust	om Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
945.0	00	775	0	0	
946.0	00	1,170	973	973	
946.2	20	1,265	244	1,216	
947.0	00	1,620	1,154	2,370	
Device	Routing	Invert	Outlet Dev	ices	
#1	Discarded	945.00'	0.300 in/h	r Exfiltration over	Surface area
#2	Primary	946.00'	EOF, Cv= 2.62 (C= 3.28)		
			Head (feet	1.00 1.20 2.00	
			Width (fee	t) 5.00 10.00 65.0	00


Discarded OutFlow Max=0.01 cfs @ 12.17 hrs HW=946.25' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=3.04 cfs @ 12.17 hrs HW=946.25' (Free Discharge) 2=EOF (Weir Controls 3.04 cfs @ 1.48 fps)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 93

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 94

Stage-Discharge for Pond 1P: RG 1

Elevation	Discharge	Discarded	Primary	Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
945.00	0.00	0.00	0.00	946.02	0.06	0.01	0.05
945.02	0.01	0.01	0.00	946.04	0.15	0.01	0.14
945.04	0.01	0.01	0.00	946.06	0.28	0.01	0.27
945.06	0.01	0.01	0.00	946.08	0.44	0.01	0.43
945.08	0.01	0.01	0.00	946.10	0.63	0.01	0.62
945.10	0.01	0.01	0.00	946.12	0.85	0.01	0.84
945.12	0.01	0.01	0.00	946.14	1.11	0.01	1.10
945.14	0.01	0.01	0.00	946.16	1.39	0.01	1.38
945.16	0.01	0.01	0.00	946.18	1.71	0.01	1.70
945.18	0.01	0.01	0.00	946.20	2.06	0.01	2.05
945.20	0.01	0.01	0.00	946.22	2.45	0.01	2.44
945.22	0.01	0.01	0.00	946.24	2.88	0.01	2.87
945.24	0.01	0.01	0.00	946.26	3.36	0.01	3.35
945.26	0.01	0.01	0.00	946.28	3.90	0.01	3.89
945.28	0.01	0.01	0.00	946.30	4.50	0.01	4.49
945.30	0.01	0.01	0.00	946.32	5.16	0.01	5.15
945.32	0.01	0.01	0.00	946.34	5.88	0.01	5.87
945.34	0.01	0.01	0.00	946.36	6.68	0.01	6.67
945.36	0.01	0.01	0.00	946.38	7.55	0.01	7.54
945.38	0.01	0.01	0.00	946.40	8.49	0.01	8.48
945.40	0.01	0.01	0.00	946.42	9.51	0.01	9.50
945.42	0.01	0.01	0.00	946.44	10.61	0.01	10.60
945.44	0.01	0.01	0.00	946.46	11.79	0.01	11.78
945.46	0.01	0.01	0.00	946.48	13.06	0.01	13.05
945.48	0.01	0.01	0.00	946.50	14.41	0.01	14.40
945.50	0.01	0.01	0.00	946.52	15.86	0.01	15.85
945.52	0.01	0.01	0.00	946.54	17.39	0.01	17.38
945.54	0.01	0.01	0.00	946.56	19.01	0.01	19.00
945.56	0.01	0.01	0.00	946.58	20.74	0.01	20.73
945.58	0.01	0.01	0.00	946.60	22.55	0.01	22.54
945.60	0.01	0.01	0.00	946.62	24.47	0.01	24.46
945.62	0.01	0.01	0.00	946.64	26.49	0.01	26.48
945.64	0.01	0.01	0.00	946.66	28.61	0.01	28.59
945.66	0.01	0.01	0.00	946.68	30.83	0.01	30.82
945.68	0.01	0.01	0.00	946.70	33.16	0.01	33.15
945.70	0.01	0.01	0.00	946.72	35.60	0.01	35.59
945.72	0.01	0.01	0.00	946.74	38.14	0.01	38.13
945.74	0.01	0.01	0.00	946.76	40.80	0.01	40.79
945.76	0.01	0.01	0.00	946.78	43.57	0.01	43.56
945.78	0.01	0.01	0.00	946.80	46.46	0.01	46.45
945.80	0.01	0.01	0.00	946.82	49.46	0.01	49.45
945.82	0.01	0.01	0.00	946.84	52.58	0.01	52.57
945.84	0.01	0.01	0.00	946.86	55.81	0.01	55.80
945.86	0.01	0.01	0.00	946.88	59.17	0.01	59.16
945.88	0.01	0.01	0.00	946.90	62.65	0.01	62.64
945.90	0.01	0.01	0.00	946.92	66.26	0.01	66.25
945.92	0.01	0.01	0.00	946.94	69.99	0.01	69.98
945.94	0.01	0.01	0.00	946.96	73.85	0.01	73.83
945.96	0.01	0.01	0.00	946.98	77.83	0.01	77.82
945.98	0.01	0.01	0.00	947.00	81. 9 4	0.01	81.93
946.00	0.01	0.01	0.00				

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 95

Stage-Area-Storage for Pond 1P: RG 1

-	0 (01	l er e	0 (01
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
945.00 945.02	775 783	0 16	946.02 946.04	1,179 1,189	996 1,020
945.04	791	31	946.06	1,198	1,044
945.06	799	47	946.08	1,198	1,044
945.08	807	63	946.10	1,218	1,092
945.10	815	79	946.12	1,227	1,116
945.12	822	96	946.14	1,236	1,141
945.14	830	112	946.16	1,246	1,166
945.16	838	129	946.18	1,255	1,191
945.18	846	146	946.20	1,265	1,216
945.20	854	163	946.22	1,274	1,241
945.22	862	180	946.24	1,283	1,267
945.24	870	197	946.26	1,292	1,293
945.26	878	215	946.28	1,300	1,319
945.28	886	232	946.30	1,309	1,345
945.30	893	250	946.32	1,318	1,371
945.32	901	268	946.34	1,327	1,397
945.34	909	286	946.36	1,336	1,424
945.36	917	305	946.38	1,345	1,451
945.38	925	323	946.40	1,354	1,478
945.40	933	342	946.42	1,363	1,505
945.42	941	360	946.44	1,372	1,532
945.44	949	379	946.46	1,380	1,560
945.46	957	398	946.48	1,389	1,588
945.48	965	418	946.50	1,398	1,615
945.50	973	437	946.52	1,407	1,644
945.52	980	456	946.54	1,416	1,672
945.54	988	476	946.56	1,425	1,700
945.56	996	496	946.58	1,434	1,729
945.58	1,004	516	946.60	1,443	1,758
945.60	1,012	536	946.62	1,451	1,786
945.62	1,020	556	946.64	1,460	1,816
945.64	1,028	577	946.66	1,469	1,845
945.66	1,036	598	946.68	1,478	1,874
945.68	1,044	618	946.70	1,487	1,904
945.70	1,052	639	946.72	1,496	1,934
945.72 945.74	1,059 1,067	660 682	946.74	1,505 1,513	1,964
945.74 945.76	1,067 1,075	703	946.76 946.78	,	1,994
945.78	1,075 1,083	703 725	946.80	1,522 1,531	2,024 2,055
945.80	1,003	725 746	946.82	1,540	2,033
945.82	1,099	748 768	946.84	1,549	2,116
945.84	1,107	790 790	946.86	1,558	2,110
945.86	1,115	813	946.88	1,567	2,179
945.88	1,123	835	946.90	1,576	2,210
945.90	1,130	857	946.92	1,584	2,242
945.92	1,138	880	946.94	1,593	2,274
945.94	1,146	903	946.96	1,602	2,306
945.96	1,154	926	946.98	1,611	2,338
945.98	1,162	949	947.00	1,620	2,370
946.00	1,170	973		,	,

Printed 8/31/2023 Page 96

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 2P: RG 2

Inflow Area = 0.630 ac, 20.80% Impervious, Inflow Depth = 4.74" for 100-Year event

Inflow = 4.34 cfs @ 12.18 hrs, Volume= 0.249 af

Outflow = 4.25 cfs @ 12.20 hrs, Volume= 0.249 af, Atten= 2%, Lag= 1.5 min

Discarded = 0.03 cfs @ 12.20 hrs, Volume= 0.083 af Primary = 4.22 cfs @ 12.20 hrs, Volume= 0.166 af

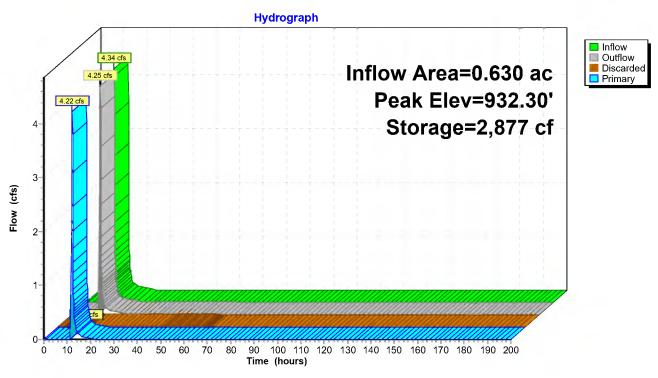
Routed to Pond 27P: out

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs Peak Elev= 932.30' @ 12.20 hrs Surf.Area= 1,819 sf Storage= 2,877 cf

Plug-Flow detention time= 409.9 min calculated for 0.249 af (100% of inflow)

Center-of-Mass det. time= 410.4 min (1,196.0 - 785.7)

Volume	Invert	: Avail.Sto	rage Storag	je Description	
#1	930.00	4,30	08 cf Custo	m Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on S	urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
930.0	00	860	0	0	
931.0	00	1,240	1,050	1,050	
932.0	00	1,430	1,335	2,385	
932.2	20	1,760	319	2,704	
933.0	00	2,250	1,604	4,308	
Device	Routing	Invert	Outlet Device	200	
#1	Discarded	930.00'		Exfiltration over	Surface area
# 1	Discarded	930.00	0.000 111/111	Laminanon over	Surface area


#1 Discarded #2 Primary 932.00' **0.600 in/hr Exfiltration over Surface area**#2 Use Primary 932.00' Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
Head (feet) 1.00 1.20 2.00
Width (feet) 5.00 10.00 30.00

Discarded OutFlow Max=0.03 cfs @ 12.20 hrs HW=932.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=4.21 cfs @ 12.20 hrs HW=932.30' (Free Discharge) 2=Custom Weir/Orifice (Weir Controls 4.21 cfs @ 1.63 fps)

Page 97

Pond 2P: RG 2

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 98

Stage-Discharge for Pond 2P: RG 2

Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	(cfs)
930.00	0.00	0.00	0.00
930.05	0.01	0.01	0.00
930.10	0.01	0.01	0.00
930.15	0.01	0.01	0.00
930.20	0.01	0.01	0.00
930.25	0.01	0.01	0.00
930.30	0.01	0.01	0.00
930.35 930.40	0.01 0.01	0.01 0.01	0.00 0.00
930.40	0.01	0.01	0.00
930.50	0.01	0.01	0.00
930.55	0.01	0.01	0.00
930.60	0.02	0.02	0.00
930.65	0.02	0.02	0.00
930.70	0.02	0.02	0.00
930.75	0.02	0.02	0.00
930.80	0.02	0.02	0.00
930.85	0.02	0.02	0.00
930.90 930.95	0.02 0.02	0.02 0.02	0.00 0.00
930.93	0.02	0.02	0.00
931.05	0.02	0.02	0.00
931.10	0.02	0.02	0.00
931.15	0.02	0.02	0.00
931.20	0.02	0.02	0.00
931.25	0.02	0.02	0.00
931.30	0.02	0.02	0.00
931.35	0.02	0.02	0.00
931.40	0.02	0.02	0.00
931.45 931.50	0.02 0.02	0.02 0.02	0.00 0.00
931.55	0.02	0.02	0.00
931.60	0.02	0.02	0.00
931.65	0.02	0.02	0.00
931.70	0.02	0.02	0.00
931.75	0.02	0.02	0.00
931.80	0.02	0.02	0.00
931.85	0.02	0.02	0.00
931.90 931.95	0.02	0.02	0.00 0.00
931.95	0.02 0.02	0.02 0.02	0.00
932.05	0.02	0.02	0.20
932.10	0.64	0.02	0.62
932.15	1.26	0.02	1.24
932.20	2.07	0.02	2.05
932.25	3.10	0.02	3.07
932.30	4.33	0.03	4.31
932.35	5.79	0.03	5.76
932.40 932.45	7.48	0.03 0.03	7.46
932.45 932.50	9.42 11.61	0.03	9.39 11.58
302.00	11.01	0.03	11.50

Elevation (feet) 932.55 932.60 932.65	Discharge (cfs) 14.05 16.77 19.77	Discarded (cfs) 0.03 0.03 0.03	Primary (cfs) 14.03 16.74 19.74
932.70	23.05	0.03	23.02
932.75 932.80	26.62 30.49	0.03 0.03	26.59 30.46
932.85	34.68	0.03	34.65
932.90 932.95	39.18 44.00	0.03 0.03	39.15 43.97
933.00	49.16	0.03	49.13

Storage

3,358

3,457

3,558

3,661

3,765

3,870

3,977

4,086

4,196

4,308

(cubic-feet)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 99

Stage-Area-Storage for Pond 2P: RG 2

Surface

(sq-ft)

1,974

2,005

2,036

2,066

2,097

2,127

2,158

2,189

2,219

2,250

Elevation	Surface	Storage	Elevation
(feet)	(sq-ft)	(cubic-feet)	(feet)
930.00	860	0	932.55
930.05	879	43	932.60
930.10	898	88	932.65
930.15	917	133	932.70
930.20	936	180	932.75
930.25	955	227	932.80
930.30	974	275	932.85
930.35 930.40	993 1,012	324 374	932.90 932.95
930.45	1,012	425	933.00
930.50	1,050	478	000.00
930.55	1,069	530	
930.60	1,088	584	
930.65	1,107	639	
930.70	1,126	695	
930.75	1,145	752	
930.80	1,164	810	
930.85	1,183	868	
930.90	1,202	928 988	
930.95 931.00	1,221 1,240	1,050	
931.05	1,249	1,112	
931.10	1,259	1,175	
931.15	1,268	1,238	
931.20	1,278	1,302	
931.25	1,288	1,366	
931.30	1,297	1,431	
931.35	1,307	1,496	
931.40	1,316	1,561	
931.45	1,326	1,627	
931.50 931.55	1,335 1,344	1,694 1,761	
931.60	1,354	1,828	
931.65	1,363	1,896	
931.70	1,373	1,965	
931.75	1,383	2,033	
931.80	1,392	2,103	
931.85	1,402	2,173	
931.90	1,411	2,243	
931.95	1,421	2,314	
932.00 932.05	1,430 1,512	2,385 2,459	
932.10	1,595	2,536	
932.15	1,677	2,618	
932.20	1,760	2,704	
932.25	1,791	2,793	
932.30	1,821	2,883	
932.35	1,852	2,975	
932.40	1,882	3,068	
932.45	1,913	3,163	
932.50	1,944	3,260	

Page 100

Summary for Pond 3P: RG 3

Inflow Area = 0.552 ac, 23.72% Impervious, Inflow Depth = 4.79" for 100-Year event Inflow = 0.220 af

Outflow = 3.56 cfs @ 12.21 hrs, Volume= 0.220 af, Atten= 2%, Lag= 1.0 min

Discarded = 0.02 cfs @ 12.21 hrs, Volume= 0.058 af Primary = 3.54 cfs @ 12.21 hrs, Volume= 0.162 af

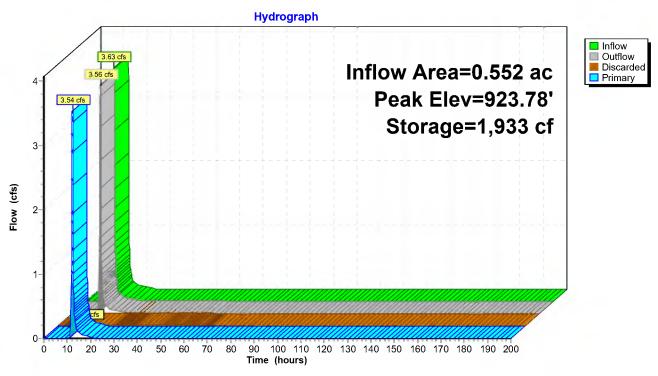
Routed to Pond 27P: out

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 923.78' @ 12.21 hrs Surf.Area= 1,410 sf Storage= 1,933 cf

Plug-Flow detention time= 296.0 min calculated for 0.220 af (100% of inflow)

Center-of-Mass det. time= 297.1 min (1,082.0 - 784.9)

Volume	Invert	t Avail.Sto	rage Storage	Description		
#1	921.50	' 3,83	37 cf Custom	Stage Data (Cor	nic)Listed below (Recalc)
□1			las Otana	Comp. Otama	\\/-4 A	
Elevation		urf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
921.5	50	440	0	0	440	
922.0	00	630	266	266	634	
922.3	30	725	203	469	733	
922.5	50	800	152	622	811	
923.0	00	890	422	1,044	914	
923.5	50	1,210	523	1,567	1,240	
923.9	90	1,500	541	2,108	1,534	
924.0	00	1,575	154	2,262	1,610	
925.0	00	1,575	1,575	3,837	1,751	
Device	Routing	Invert	Outlet Device	s		
#1	Discarded	921.50'	0.600 in/hr Exfiltration over Surface area			
#2	Primary	923.50'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)			
,						
Head (feet) 2.00 2.25 2.50 2.75 Width (feet) 5.00 10.00 40.00 50.00						


Discarded OutFlow Max=0.02 cfs @ 12.21 hrs HW=923.78' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=3.48 cfs @ 12.21 hrs HW=923.78' (Free Discharge) 2=Custom Weir/Orifice (Weir Controls 3.48 cfs @ 1.58 fps)

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 101

Priory - Haugo Soils

Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 102

Stage-Discharge for Pond 3P: RG 3

	D	D: 1.1	5 .	
Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)	E
921.50	0.00	0.00	0.00	_
921.55	0.01	0.01	0.00	
921.60	0.01	0.01	0.00	
921.65	0.01	0.01	0.00	
921.70	0.01	0.01	0.00	
921.75	0.01	0.01	0.00	
921.80	0.01	0.01	0.00	
921.85	0.01	0.01	0.00	
921.90	0.01	0.01	0.00	
921.95	0.01	0.01	0.00	
922.00	0.01	0.01	0.00	
922.05	0.01	0.01	0.00	
922.10	0.01	0.01	0.00	
922.15	0.01	0.01	0.00	
922.20	0.01	0.01	0.00	
922.25	0.01	0.01	0.00	
922.30	0.01	0.01	0.00	
922.35	0.01	0.01	0.00	
922.40	0.01	0.01	0.00	
922.45	0.01	0.01	0.00	
922.50	0.01	0.01	0.00	
922.55	0.01	0.01	0.00	
922.60	0.01	0.01	0.00	
922.65	0.01	0.01	0.00	
922.70	0.01	0.01	0.00	
922.75	0.01	0.01	0.00	
922.80 922.85	0.01 0.01	0.01 0.01	0.00	
922.00	0.01	0.01	0.00 0.00	
922.95	0.01	0.01	0.00	
923.00	0.01	0.01	0.00	
923.05	0.01	0.01	0.00	
923.10	0.01	0.01	0.00	
923.15	0.01	0.01	0.00	
923.20	0.01	0.01	0.00	
923.25	0.01	0.01	0.00	
923.30	0.01	0.01	0.00	
923.35	0.02	0.02	0.00	
923.40	0.02	0.02	0.00	
923.45	0.02	0.02	0.00	
923.50	0.02	0.02	0.00	
923.55	0.22	0.02	0.20	
923.60	0.62	0.02	0.60	
923.65	1.20	0.02	1.18	
923.70	1.95	0.02	1.93	
923.75	2.88	0.02	2.87	
923.80	4.08	0.02	4.06	
923.85	5.72	0.02	5.70	
923.90	7.96	0.02	7.94	
923.95	10.87	0.02	10.85	
924.00	14.54	0.02	14.51	

Discharge (cfs)	Discarded (cfs)	Primary (cfs)
18.98	0.02	18.96
24.10	0.02	24.08
29.87	0.02	29.85
36.27	0.02	36.25
43.30	0.02	43.28
49.10	0.02	49.08
53.90	0.02	53.88
58.18	0.02	58.16
62.12	0.02	62.09
65.78	0.02	65.76
69.23	0.02	69.21
72.50	0.02	72.47
75.61	0.02	75.59
78.60	0.02	78.58
81.47	0.02	81.44
84.23	0.02	84.21
86.91	0.02	86.89
89.50	0.02	89.48
92.02	0.02	92.00
94.47	0.02	94.44
	(cfs) 18.98 24.10 29.87 36.27 43.30 49.10 53.90 58.18 62.12 65.78 69.23 72.50 75.61 78.60 81.47 84.23 86.91 89.50 92.02	(cfs) (cfs) 18.98 0.02 24.10 0.02 29.87 0.02 36.27 0.02 43.30 0.02 49.10 0.02 53.90 0.02 58.18 0.02 62.12 0.02 65.78 0.02 69.23 0.02 72.50 0.02 75.61 0.02 78.60 0.02 81.47 0.02 84.23 0.02 86.91 0.02 89.50 0.02 92.02 0.02

Prepared by Sathre-Bergquist, Inc HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 103

Stage-Area-Storage for Pond 3P: RG 3

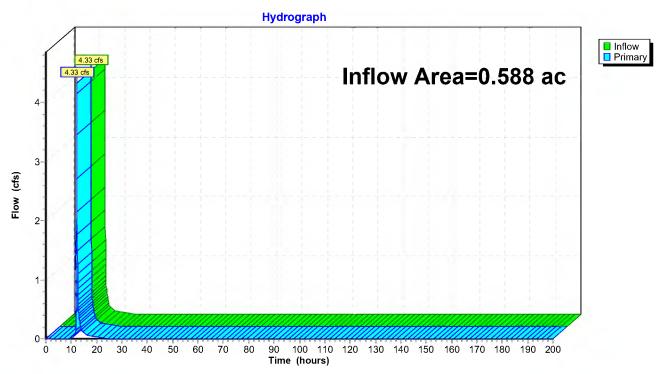
		•	•		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
921.50	440	0	924.05	1,575	2,340
921.55	457	22	924.10	1,575	2,419
921.60	475	46	924.15	1,575	2,498
921.65	493	70	924.20	1,575	2,577
921.70	512	95	924.25	1,575	2,655
921.75	531	121	924.30	1,575	2,734
921.80	550	148	924.35	1,575	2,813
921.85	569	176	924.40	1,575	2,892
921.90	589	205	924.45	1,575	2,970
921.95	609	235	924.50	1,575	3,049
922.00	630	266	924.55	1,575	3,128
922.05	645	298	924.60	1,575	3,207
922.10	661	331	924.65	1,575	3,285
922.15	677	364	924.70	1,575	3,364
922.20	693	398	924.75	1,575	3,443
922.25	709	433	924.80	1,575	3,522
922.30	725	469	924.85	1,575	3,600
922.35	743	506	924.90	1,575	3,679
922.40	762	544	924.95	1,575	3,758
922.45	781	582	925.00	1,575	3,837
922.50	800	622			•
922.55	809	662			
922.60	818	702			
922.65	826	744			
922.70	835	785			
922.75	844	827			
922.80	853	870			
922.85	862	912			
922.90	872	956			
922.95	881	1,000			
923.00	890	1,044			
923.05	920	1,089			
923.10	950	1,136			
923.15	981	1,184			
923.20	1,012	1,234			
923.25	1,044	1,285			
923.30	1,076	1,338			
923.35	1,109	1,393			
923.40	1,142	1,449			
923.45	1,176	1,507			
923.50	1,210	1,567			
923.55	1,245	1,628			
923.60	1,280	1,691			
923.65	1,315	1,756			
923.70	1,351	1,823			
923.75	1,388	1,891			
923.80	1,425	1,962			
923.85	1,462	2,034			
923.90	1,500	2,108			
923.95	1,537	2,184			
924.00	1,575	2,262			
	•				

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 104

Summary for Pond 4P: Offsite to East

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 0.588 ac, 16.41% Impervious, Inflow Depth = 4.28" for 100-Year event

Inflow = 4.33 cfs @ 12.17 hrs, Volume= 0.210 af

Primary = 4.33 cfs @ 12.17 hrs, Volume= 0.210 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 4P: Offsite to East

Priory - Haugo Soils

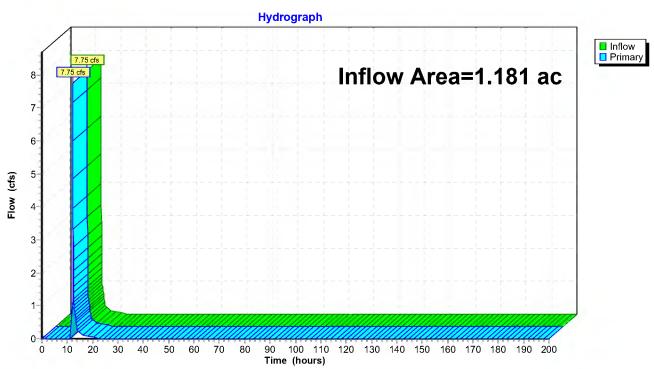
Prepared by Sathre-Bergquist, Inc

HydroCAD® 10.20-3c s/n 03665 © 2023 HydroCAD Software Solutions LLC

Page 105

Summary for Pond 27P: out

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 1.181 ac, 22.16% Impervious, Inflow Depth = 3.33" for 100-Year event

Inflow = 7.75 cfs @ 12.20 hrs, Volume= 0.328 af

Primary = 7.75 cfs @ 12.20 hrs, Volume= 0.328 af, Atten= 0%, Lag= 0.0 min

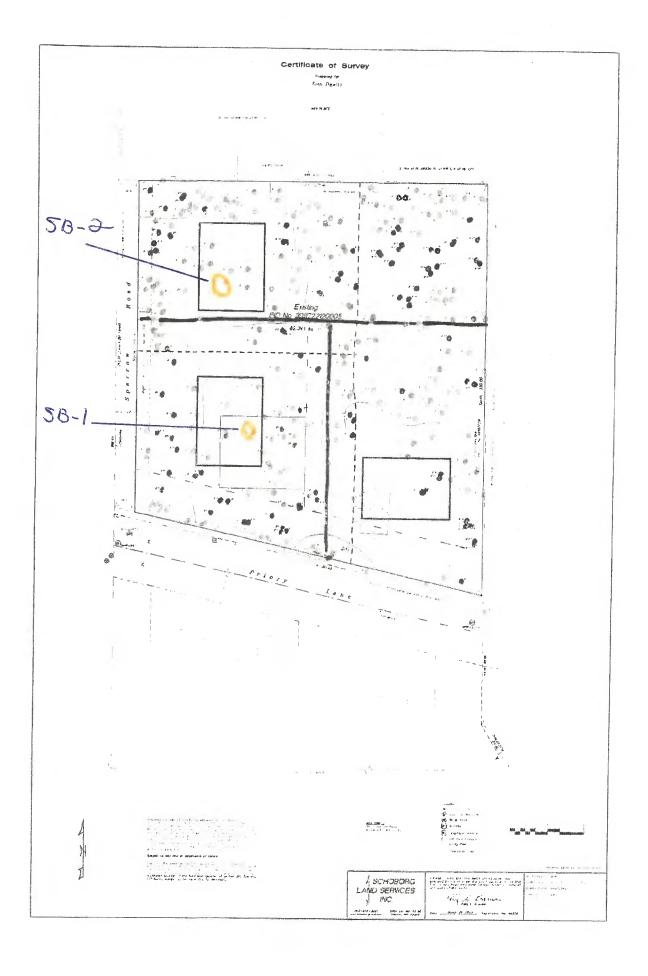
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.04 hrs

Pond 27P: out

P8 Urban Ca	tchment Model, Version 3.5			Run Date	08/31/23
Case	Priory Woods Proposed.p8c	FirstDate	10/01/12	Precip(in)	312.9
Title	Priory Woods	LastDate	01/01/22	Rain(in)	276.26
PrecFile	MSP49-20220228.pcp	Events	718	Snow(in)	36.67
PartFile	nurp50.p8p	TotalHrs	80920	TotalYrs	9.23

Case Title	Priory Woods
Case Data File	Priory Woods Proposed.p8c
Path	H:\P8\
Case Notes:	simple startup case
Storm Data File	MSP49-20220228.pcp
Particle File	nurp50.p8p
Air Temp File File	MSP49-20220228.tem

Time Steps Per Hour	10
Minimum Inter-Event Time (hrs)	10
Maximum Continuity Error %	2
Rainfall Breakpoint (inches)	0.8
Precipitation Scale Factor	1
Air Temp Offset (deg-F)	0
Loops Thru Storm File	1
Simulation Dates	
Start	1/1/2011
Keep	10/1/2012
Stop	1/1/2022


Max Snowfall Temperature (deg-f)	32.0		
SnowMelt Temperature (deg-f)	32.0		
Snowmelt Coef (in/degF-Day)	0.06		
Soil Freeze Temp (deg-F)	32.0		
Snowmelt Abstraction Factor	1.00		
Evapo-Trans. Calibration Factor	1.00		
Growing Season Start Month	5		
Growing Season End Month	10		

5-Day Antecedent Rainfall + Runoff (inches)

CN Antecedent Moisture Condition	AMC-II	AMC-III
Growing Season	1.40	2.10
NonGrowing Season	0.50	1.10

Watershed Data Watershed Name 58 7S 88 Runoff to Device RG1 RG2 RG3 Infiltration to Device Watershed Area 0.404 0.629 0.552 SCS Curve Number (Pervious) 74 65 80 1 Scale Factor for Pervious Runoff Load 0 0 0 Indirectly Connected Imperv Fraction UnSwept Impervious Fraction 0.9 0.9 0.9 UnSwept Depression Storage (inches) 0.02 0.021 0.021 UnSwept Imperv. Runoff Coefficient 1 1 1 UnSwept Scale Factor for Particle Loads 1 Swept Impervious Fraction 0 0 0 0.021 0.021 Swept Depression Storage (inches) 0.02 Swept Imperv. Runoff Coefficient 1 Swept Scale Factor for Particle Loads 1 1 Sweeping Frequency 0 0 0 Sweeping Efficiency 1 1 1 Sweeping Start Date (MMDD) 101 101 101 Sweeping Stop Date (MMDD) 1231 1231 1231

Device Data							
Device Name		Out	RG1	RG2	RG3		
Device Type		PIPE	INF_BASIN	INF_BASIN	INF_BASIN		
nfiltration Outlet							
Normal Outlet							
Spillway Outlet					Out		
Particle Removal Scale Fact	or		1	1	1		
Bottom Elevation (ft)			945	930	921.5		
Bottom Area (acres)			0.0178	0.0197	0.0101		
Permanent Pool Area (acres)						
Permanent Pool Volume (ac	-ft)						
Perm Pool Infilt Rate (in/hr)							
Flood Pool Area (acres)			0.029	0.033	0.0277		
Flood Pool Volume (ac-ft)			0.0223	0.054	0.0359		
Flood Pool Infilt Rate (in/hr)			0.3	0.6	0.06		
Infilt Basin Void Fraction (%)			100	100	100		
Detention Pond Outlet Parar	neters		1				
Outlet Type							
Outlet Orifice Diameter (in)							
Orifice Discharge Coef							
Outlet Weir Length (ft)							
Weir Discharge Coef							
Perforated Riser Height (ft)							
Number of Holes in Riser							
Holes Diameter							
Flood Pool Drain Time (hrs)							
Swale Parameters							
Length of Flow Path (ft)							
Slope of Flow Path %							
Bottom Width (ft)							
Side Slope (ft-v/ft-h)							
Maximum Depth of Flow (ft)							
Hydraulic Model							
Mannings n Constant Hydraulic Model Pipe, Splitter, Aquifer Param	eter	0					
Hydraulic Model	eter	0					
<mark>Hydraulic Model</mark> Pipe, Splitter, Aquifer Param	eter	0					
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data	eter	0					
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File		0 P10%	P30%	P50%	P80%		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class	nurp50.p8p		P30% 100	P50% 100	P80% 100	94	
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%)	nurp50.p8p P0%	P10%					
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr)	nurp50.p8p P0% 0	P10% 50	100	100	100		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da	nurp50.p8p P0% 0 0	P10% 50 0.03	100 0.3	100 1.5	100 15		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da/2nd)	nurp50.p8p P0% 0 0 0 0	P10% 50 0.03	100 0.3 0	100 1.5 0	100 15 0		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/day-ppr Impervious Runoff Conc (pp	nurp50.p8p P0% 0 0 0 0	P10% 50 0.03 0	100 0.3 0	100 1.5 0	100 15 0		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/day-ppr Impervious Runoff Conc (pp	nurp50.p8p P0% 0 0 0 0	P10% 50 0.03 0 0	100 0.3 0 0	100 1.5 0 0	100 15 0 0		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/day-ppr Impervious Runoff Conc (ppm Pervious Runoff Conc (ppm) Pervious Conc Exponent	nurp50.p8p P0% 0 0 0 1 1	P10% 50 0.03 0 0 100 1	100 0.3 0 0 0 0 100	100 1.5 0 0 0 100	100 15 0 0 0 200		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/day-ppr Impervious Runoff Conc (pp Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day)	nurp50.p8p P0% 0 0 0 1 1 1 0	P10% 50 0.03 0 0 0 100 1 1.75	100 0.3 0 0 0 0	100 1.5 0 0 0 100	100 15 0 0 0 200		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/day-ppr Impervious Runoff Conc (pp Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da	nurp50.p8p P0% 0 0 0 1 1 1 0	P10% 50 0.03 0 0 0 100 1 1.75 0.25	100 0.3 0 0 0 100 1 1.75 0.25	100 1.5 0 0 0 100 1 1.75 0.25	100 15 0 0 0 200 1 3.5 0.25		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/day-ppr Impervious Runoff Conc (ppr Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient	nurp50.p8p P0% 0 0 0 0 1 1 0 0 0	P10% 50 0.03 0 0 0 100 1 1.75 0.25	100 0.3 0 0 0 100 1,75 0.25	100 1.5 0 0 0 100 1 1.75 0.25	100 15 0 0 0 200 1 3.5 0.25		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/day-ppr Impervious Runoff Conc (ppm Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0	P10% 50 0.03 0 0 0 100 1 1.75 0.25	100 0.3 0 0 0 100 1 1.75 0.25	100 1.5 0 0 0 100 1 1.75 0.25	100 15 0 0 0 200 1 3.5 0.25 20		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/day-ppr Impervious Runoff Conc (ppm Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2	100 0.3 0 0 0 100 1 1.75 0.25 20 2	100 1.5 0 0 0 100 1 1.75 0.25 20	100 15 0 0 0 200 1 3.5 0.25		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/day-ppr Impervious Runoff Conc (ppm Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent Sweeper Efficiency	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 0	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2	100 0.3 0 0 0 100 1 1.75 0.25 20 2	100 1.5 0 0 0 100 1 1.75 0.25 20	100 15 0 0 0 200 1 3.5 0.25 20		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay (1/day-ppr Impervious Runoff Conc (ppm Pervious Runoff Conc (ppm Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component D	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 0	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2	100 0.3 0 0 0 100 1 1.75 0.25 20 2	100 1.5 0 0 0 100 1 1.75 0.25 20	100 15 0 0 0 200 1 3.5 0.25 20	ZN	НС
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay (1/day-ppr Impervious Runoff Conc (ppm Pervious Runoff Conc (ppm Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component D	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 0 0 ata	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2	100 0.3 0 0 0 100 1 1.75 0.25 20 2	100 1.5 0 0 0 100 1 1.75 0.25 20 2	100 15 0 0 200 1 3.5 0.25 20 2	ZN	НС
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ff/hr) First Order Decay (1/day-ppr Hydraulic Runoff Conc (ppm) Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component Decomponent Name	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 0 0 ata	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2	100 0.3 0 0 0 100 1 1.75 0.25 20 2	100 1.5 0 0 0 100 1 1.75 0.25 20 2	100 15 0 0 200 1 3.5 0.25 20 2	ZN	НС
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ff/hr) First Order Decay (1/day-ppr Impervious Runoff Conc (ppm) Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component D Component Name	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 0 0 ata	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2	100 0.3 0 0 0 100 1 1.75 0.25 20 2	100 1.5 0 0 0 100 1 1.75 0.25 20 2	100 15 0 0 200 1 3.5 0.25 20 2	ZN 5	HC 0.1
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay (1/day-ppr Impervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component D Component Name	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 thickey the state of the state	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2	100 0.3 0 0 0 100 1.75 0.25 20 2 0	100 1.5 0 0 0 100 1 1.75 0.25 20 2 5	100 15 0 0 200 1 3.5 0.25 20 2 15		
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay (1/day-ppr Impervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component D Component Name Water Quality Criteria (ppm) Level 1	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 thickey the state of the state	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2 0	100 0.3 0 0 0 100 11 1.75 0.25 20 2 0	100 1.5 0 0 0 100 1 1.75 0.25 20 2 5	100 15 0 0 0 200 1 3.5 0.25 20 2 15	5	0.1
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da 2nd Order Decay (1/day-ppr Impervious Runoff Conc (ppm Pervious Runoff Conc (ppm Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component D Component Name Water Quality Criteria (ppm) Level 1 Level 2 Level 3	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 atta TSS	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2 0 TP	100 0.3 0 0 0 100 1.75 0.25 20 2 0 TKN	100 1.5 0 0 0 100 1.75 0.25 20 2 5 CU	100 15 0 0 0 200 1 3.5 0.25 20 2 15 PB	5 0.0362 0.38	0.1 0.5 1
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da 2nd Order Decay (1/day-ppr Impervious Runoff Conc (ppm Pervious Runoff Conc (ppm Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component D Component Name Water Quality Criteria (ppm) Level 1 Level 2 Level 3	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 tata TSS	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2 0 TP	100 0.3 0 0 0 100 1.75 0.25 20 2 0 TKN	100 1.5 0 0 0 100 1.75 0.25 20 2 5	100 15 0 0 0 200 1 3.5 0.25 20 2 15	5 0.0362	0.1 0.5
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da/2nd Order Decay (1/da/2npr) Impervious Runoff Conc (ppm/Pervious Runoff Conc (ppm/Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da/Washoff Coefficient Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component D Component Name Water Quality Criteria (ppm/Level 1 Level 2 Level 3	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 ata TSS	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2 0 TP	100 0.3 0 0 0 100 1.75 0.25 20 2 0 TKN	100 1.5 0 0 0 100 1.75 0.25 20 2 5 CU	100 15 0 0 0 200 1 3.5 0.25 20 2 15 PB	5 0.0362 0.38	0.1 0.5 1
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da/2nd Order Decay (1/da/2npr) Impervious Runoff Conc (ppm) Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (lbs-ac-day) Particle Removal Rate (1/da/Washoff Coefficient Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component D Component Name Water Quality Criteria (ppm) Level 1 Level 2 Level 3 Content Scale Factor	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 ata TSS	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2 0 TP 0.025 0.05 0.1	100 0.3 0 0 0 100 1.7 1.75 0.25 20 2 0 TKN	100 1.5 0 0 0 100 1.7 1.75 0.25 20 2 5 CU 2 0.0048 0.02	100 15 0 0 0 200 1 3.5 0.25 20 2 15 PB 0.02 0.014 0.15	5 0.0362 0.38	0.1 0.5 1
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da/2-ppr) Impervious Runoff Conc (pp) Pervious Runoff Conc (ppm) Pervious Conc Exponent Accum. Rate (ibs-ac-day) Particle Removal Rate (1/da/2-particle Removal Rate (1/da/2	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 0 atta TSS	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2 0 TP 0.025 0.05 0.1	100 0.3 0 0 0 100 1,75 0.25 20 2 0 TKN	100 1.5 0 0 0 100 1.7 1.75 0.25 20 2 5 CU 2 0.0048 0.02 1	100 15 0 0 0 200 1 3.5 0.25 20 2 15 PB 0.02 0.014 0.15	5 0.0362 0.38 1	0.1 0.5 1 1
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da/2nd Order Decay (1/da/2nd) Impervious Runoff Conc (ppm/2nd) Pervious Runoff Conc (ppm/2nd) Pervious Conc Exponent Accum. Rate (ibs-ac-day) Particle Removal Rate (1/da/2nd) Washoff Coefficient Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component Domonent Name Water Quality Criteria (ppm/2nd) Level 1 Level 2 Level 3 Content Scale Factor Particle Composition (mg/kg/20%) P10%	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 0 atta TSS 5 10 20 1	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2 0 TP 0.025 0.05 0.1 1 99000 3850	100 0.3 0 0 0 100 1,75 0.25 20 2 0 TKN 2 1 0.5	100 1.5 0 0 0 100 1.7 1.75 0.25 20 2 5 CU 2 0.0048 0.02 1 13600 340	100 15 0 0 0 200 1 3.5 0.25 20 2 15 PB 0.02 0.014 0.15 1	5 0.0362 0.38 1 64000 1600	0.1 0.5 1 1 250000 22500
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da/2nd Order Decay (1/da/2nd) Impervious Runoff Conc (ppm/2nd) Pervious Runoff Conc (ppm/2nd) Pervious Runoff Conc (ppm/2nd) Pervious Conc Exponent Accum. Rate (ibs-ac-day) Particle Removal Rate (1/da/2nd) Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component Domonent Name Water Quality Criteria (ppm/2nd) Level 1 Level 2 Level 3 Content Scale Factor Particle Composition (mg/kg/20%) P10% P30%	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2 0 TP 0.025 0.05 0.1 1 99000 3850 3850	100 0.3 0 0 0 100 1,75 0.25 20 2 0 TKN 2 1 0.5	100 1.5 0 0 0 100 1.7 1.75 0.25 20 2 5 CU 2 0.0048 0.02 1 13600 340 340	100 15 0 0 0 200 1 3.5 0.25 20 2 15 PB 0.02 0.014 0.15	5 0.0362 0.38 1 1 64000 1600	0.1 0.5 1 1 250000 22500 22500
Hydraulic Model Pipe, Splitter, Aquifer Param Hydraulic Res. Time (hrs) Particle Data Particle File Particle Class Filtration Efficiency (%) Settling Velocity (ft/hr) First Order Decay Rate (1/da/2nd Order Decay (1/da/2nd) Impervious Runoff Conc (ppm/2nd) Pervious Runoff Conc (ppm/2nd) Pervious Conc Exponent Accum. Rate (ibs-ac-day) Particle Removal Rate (1/da/2nd) Washoff Coefficient Washoff Coefficient Washoff Exponent Sweeper Efficiency Water Quality Component Domonent Name Water Quality Criteria (ppm/2nd) Level 1 Level 2 Level 3 Content Scale Factor Particle Composition (mg/kg/20%) P10%	nurp50.p8p P0% 0 0 0 0 1 1 1 0 0 0 0 0 0 atta TSS 5 10 20 1	P10% 50 0.03 0 0 0 100 1 1.75 0.25 20 2 0 TP 0.025 0.05 0.1 1 99000 3850	100 0.3 0 0 0 100 1,75 0.25 20 2 0 TKN 2 1 0.5	100 1.5 0 0 0 100 1.7 1.75 0.25 20 2 5 CU 2 0.0048 0.02 1 13600 340	100 15 0 0 0 200 1 3.5 0.25 20 2 15 PB 0.02 0.014 0.15 1	5 0.0362 0.38 1 64000 1600	0.1 0.5 1 1 250000 22500

HAUGO

Haugo GeoTechnical Services 2825 Cedar Ave South Minneapolis, MN, 55407

BORING NUMBER SB-1 PAGE 1 OF 1

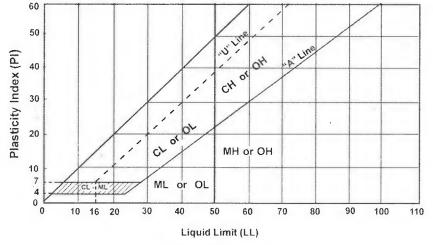
CLIEN	T Zel	nnder Homes	PROJECT N	AME	4633	Sparrow R	Road		
PROJI	ECT N	JMBER _23-0498	PROJECT LOCATION Minnetonka, MN						
DATE STARTED _7/12/23 COMPLETED _7/12/23 DRILLING CONTRACTOR _HGTS- 45									
			GROUND WA	ATER	LEVE	LS:			
RILL	ING MI	ETHOD Hollow Stem Auger/Split Spoon	AT TIM	1E OF	DRILL	NG N	lot End	countered	
.ogg	ED BY	MS CHECKED BY PG	AT EN	D OF	DRILL	ING N	ot Enc	ountered	
OTE	s		AFTER	DRII	LLING	Not Er	ncount	ered	
о UEP I Н (#)	GRAPHIC LOG	MATERIAL DESCRIPTION		NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	Moisture Content (%)	SPT N VALUE ▲	
	711/2	Silty Sand with Grass and Roots, black, moist (Topsoil/Fill)						
_	***	Silty Sand, dark brown, damp (Fill)		AU 1					
-				SS 2		6-9-8 (17)		A	
-		Sandy Lean Clay, trace Roots, dark brown, damp (Possibl	eÆill)	/		>			
5		Sarray Edan Stay, Radio Notes, dank Brown, damp (1 000)Br	(III)	\			1		
			χ	SS 3		6-7-10 (17)		♣	
			\mathcal{M}			(17)			
				1		\rightarrow			
		(CL) Lean Clay, brown, damp, stiff to very stiff (Glacial Till)					-		
		(e2) Zean elay, grewn, damp, can to very can (elasta, very	\rightarrow	SS	7	6-9-5			
				4		(14)			
			× /						
							-		
10			\ \	SS		6-8-9			
			\setminus / \setminus	5		(17)			
					1 1		1		
							_		
		(SM) Silty Sand, fine to coarse grained, trace Gravel, brow moist, medium dense (Glacial Till)	n,	SS		3-6-7			
			\land	6		(13)		T:	
			Y				1		
15		(SP) Poorly Graded Sand, fine grained, trace Gravel, brow moist, medium dense (Glacial Till)	n,	SS		1-4-8			
		,))		7		(12)		1 1	
			V 1				1		
-									
20				66		4-9-12			
			X	SS 8		4-9-12 (21)		*	

HAUGO

Haugo GeoTechnical Services 2825 Cedar Ave South Minneapolis, MN, 55407

BORING NUMBER SB-2 PAGE 1 OF 1

SER	VICE	Telephone: 612-729-2959 Fax: 763-445-2238								
CLIEN	NT Ze	hnder Homes	PROJECT I	NAME	4633	Sparrow R	Road			
PROJ	PROJECT NUMBER 23-0498 DATE STARTED 7/12/23 COMPLETED 7/12/23			PROJECT LOCATION Minnetonka, MN						
DATE										
DRILL	LING C	ONTRACTOR HGTS- 45	GROUND V	VATER	LEVE	LS:				
DRILL	ING M	ETHOD Hollow Stem Auger/Split Spoon	AT TI	ME OF	DRIL	_ING N	lot End	countered		
LOGG	ED BY	CHECKED BY PG	AT EI	ND OF	DRILL	ING N	ot Enc	ountered		
NOTE	s		AFTE	R DRI	LLING	Not Er	ncount	ered		
O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	Moisture Content (%)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
_ =	70.7 7.77 7.77	Silty Sand with Roots, black, damp (Topsoil)		AU 9						
		(SM) Silty Sand, fine to medium grained, trace Gravel, bromoist, loose (Glacial Till)	own,	SS 10		4-3-3 (6)		1		
				<i>y</i>		>	1			
5_5		(SP) Poorly Graded Sand, fine to coarse grained, trace Gr brown, moist, medium dense (Glacial Till)	ravel,	SS 11		3-5-6 (11)	_			
						>				
				SS 12		3-8-11 (19)	_			
10_				SS 13	-	4-9-11 (20)				
				SS 14	-	3-9-12 (21)	-			
15_			X	SS 15		5-9-13 (22)				
20			V	ss	_	5-12-15				
			[/	16		(27)				


Descriptive Terminology of Soil

Standard D 2487 - 00 Classification of Soils for Engineering Purposes (Unified Soil Classification System)

	Critor	is for Accion	ing Group	Symbols and	Soi	ls Classification
		up Names Us			Group Symbol	Group Name ^b
, Lo	Gravels	Gicali Giavolo		$C_u \ge 4$ and $1 \le C_c \le 3^c$	GW	Well-graded gravel ^d
ed Soils retained o	More than 50% of coarse fraction	5% or less	s fines e	$C_u \le 4$ and/or $1 > C_c > 3$ c	GP	Poorly graded gravel
(D) >	retained on	Gravels wi	th Fines	Fines classify as ML or MH	GM	Silty gravel d 1g
rained 0% ret 00 siev	No. 4 sieve	More than 1:	2% fines e	Fines classify as CL or CH	GC	Clayey gravel dfg
250	Sands 50% or more of coarse fraction passes	% or more of 5% or less fines		$C_u \ge 6$ and $1 \le C_c \le 3^c$	SW	Well-graded sand h
Coarse- nore than No.				$C_u < 6$ and/or $1 > C_c > 3$ c	SP	Poorly graded sand h
Coars		Sands with Fines More than 12%		Fines classify as ML or MH	SM	Silty sand 1gh
om o	No. 4 sieve			Fines classify as CL or CH	SC	Clayey sand (ah
Je Pe	0.11	Inorganic PI > 7 ar		nd plots on or above "A" line	CL	Lean clay k i m
Soils ssed the	Liquid limit	morganic	PI < 4 or	plots below "A" line!	ML	Silt k i m
pa		Organic		nit - oven dried < 0.75	OL OL	Organic clay k l m n Organic silt k l m c
graine more	Cilta and alaus	Inorganic	PI plots o	PI plots on or above "A" line		Fat clay k i m
Or TO	Silts and clays Liquid limit	morganic	PI plots b	elow "A" line	MH	Elastic silt k I m
Fine-g 50% or t No	50 or more	Organic	Liquid lim	nit - oven dried < 0.75	ОН	Organic clay k 1 m p
20		organic -		nit - not dried	ОН	Organic silt ik F m q
Highly	Organic Soils	Primarily org	anic matter	r, dark in color and organic odor	PT	Peat

- Based on the material passing the 3-in (75mm) sieve.
- b If field sample contained cobbles or boulders, or both, add "with cobbles or boulders or both" to group name
- $= D_{60} / D_{10} C_{e} = (D_{30})^{2}$ D₁₀ x D₆₀
- If soil contains≥15% sand, add "with sand" to group name
- Gravels with 5 to 12% fines require dual symbols
- GW-GM well-graded gravel with silt GW-GC well-graded gravel with clay
- GP-GM poorly graded gravel with sill GP-GC poorly graded gravel with clay
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM
- If fines are organic, add "with organic fines" to group name.
- If soil contains ≥ 15% gravel, add "with gravel" to group name
- Sands with 5 to 12% fines require dual symbols:
 - SW-SM well-graded sand with silt
 - SW-SC well-graded sand with clay
 - poorly graded sand with silt
 - SP-SC SP-SC poorly graded sand with clay
 If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.
- If soil contains 10 to 29% plus No. 200, add "with sand" or "with gravel" whichever is predominant.
- If soil contains≥30% plus No. 200, predominantly sand, add "sandy" to group name
- m. If soil contains≥ 30% plus No. 200 predominantly gravel, add 'gravelly" to group name PI ≥ 4 and plots on or above "A" line.
- PI < 4 or plots below "A" line
- PI plots on or above "A" line
- q. Pl plots below "A" line.

	Lá	boratory	Tests
DD	Dry density, pcf	oc	Organic content, %
WD	Wet density, pcf	S	Percent of saturation, %
MC	Natural moisture content, %	SG	Specific gravity
LL	Liqiuid limit, %	C	Cohesion, psf
PL	Plastic limit, %	Ø	Angle of internal friction
PI	Plasticity index, %	qu	Unconfined compressive strength, psf
P200	% passing 200 sieve	qp	Pocket penetrometer strength, tsf

Particle Size Identification

Boulders	over 12"
Cobbies	3" to 12"
Gravel	
Coarse	3/4" to 3"
Fine	No. 4 to 3/4"
Sand	
Coarse	No. 4 to No. 10
Medium	No. 10 to No. 40
Fine	No. 40 to No. 200
Silt	< No. 200, PI < 4 or
	below "A" line
Clay	< No. 200, PI ≥ 4 and
	on or above "A" line

Relative Density of Cohesionless Soils

Very loose	0 to 4 BPF
Loose	5 to 10 BPF
Medium dense	11 to 30 BPF
Dense	31 to 50 BPF
Very dense	over 50 BPF

Consistency of Cohesive Soils

Very soft	0 to 1 BPF
Soft	2 to 3 BPF
Rather soft	4 to 5 BPF
Medium	6 to 8 BPF
Rather stiff	9 to 12 BPF
Stiff	13 to 16 BPF
Very stiff	17 to 30 BPF
Hard	over 30 BPF

Drilling Notes

Standard penetration test borings were advanced by 3 1/4" or 6 1/4" 1D hollow-stem augers unless noted otherwise, Jetting water was used to clean out auger prior to sampling only where indicated on logs. Standard penetration test borings are designated by the prefix "ST (Split Tube). All samples were taken with the standard 2" OD split-tube sampler, except where noted.

Power auger borings were advanced by 4" or 6" diameter continuousflight, solid-stem augers. Soil classifications and strata depths were inferred from disturbed samples augered to the surface and are, therefore, somewhat approximate. Power auger borings are designated by the

Hand auger borings were advanced manually with a 1 1/2" or 3 1/4" diameter auger and were limited to the depth from which the auger could be manually withdrawn. Hand auger borings are indicated by the prefix

BPF: Numbers indicate blows per foot recorded in standard penetration test, also known as "N" value. The sampler was set 6" into undisturbed soil below the hollow-stem auger. Driving resistances were then counted for second and third 6" increments and added to get BPF. Where they differed significantly, they are reported in the following form: 2/12 for the second and third 6" increments, respectively.

WH: WH indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required

WR: WR indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

TW indicates thin-walled (undisturbed) tube sample.

Note: All tests were run in general accordance with applicable ASTM standards

Project: Priory Woods

Location: 4633 Sparrow Road

Minnetonka, MN

Prepared for: Zehnder Homes

Prepared by: Sathre-Bergquist, Inc.

Date: 09/01/23 Revised:

SUMMARY

4633 Sparrow Rd is a single family residence to be split into 3 new single family lots. Each lot shall have its own stormwater management feature. Based on available on site soils information provided by Haugo Geotechnical Servics soils are a mix of CL (C) & SM, SP (A-B) Hydrologic soils group. C soils will be assumed for a conservative preliminary design. BMP goals will be achieve by 3 individual infiltration

3 individual rain gardens are proposed to meet stormwater requirements. Based on soils information SM & SP soils are located on site at 10ft below grade. Rain gardens shall be over excavated to this soils seem. All disturbed areas shall be amended via incorporation of 2" of compost tilled into 6" of topsoil - AFTER construction is complete. Compost shall meet MNDOT spec 3890.1B Grade 1

Design

Stormwater design was completed using HydroCAD for Pre & post development conditions. Runoff was estimated using TR-20. NOAA Atlas Hydrology

14 was used to assign rainfall depths for analysis and runoff from pervious & impervious was calculated separately.

Curve Number

NOAA Atlas 14 Rainfall Depth (in) 24-hour Duration

Curve numbers selected based on land use, soil conditions & impervious area 10-Yr 100-Yr Snow Melt 2.50 2.87 4.27 7.41 7.20

Sizing & water quality Filtration Basin for this projected have been sized to filtrate 1.0" of runoff from new impervious surfaces. This is consistent with standard

required by the city & watershed. Water quality requirement is met by providing infiltration for a water quality volume equal to 1.1" of runoff

from new impervious

Soils NRCS Websoils survey data base indicates on site soils are a combination of A & B Hydrologic Group soils. - Soil logs done by Haugo Geo Technical Services show SP, SM & CL soils. These range from C to A soils. For conservative design C soils are used

City of Minnetonka

Runoff Rate Control

Limit peak runoff flow rates to existing conditions for 1, 2, 10, 100 year events from all discharge points from the project as well as 100yr 10day snow melt

Runoff Volume Control

Provide onsite retention of 1.1-in of runoff from all impervious surfaces. Infiltration is the prefered control practice. Alternative methods can

be used if site conditions do not allow of infiltration

Water Quality Treatment

Provide treatment for all runoff of at least 60% removal efficiency for total phosphorus (TP) & 90% TSS

City requires that BMPs include pretreatment of runoff to removed soilds prior to discharge to infiltration/filtration features.

Low Floor Elevation

2ft above the 100 yr flood elevation for wetlands, floodplains & Shorelands. Landlocked basins shall be 2ft above the back to back 100 yr storm events (first assuming AMC-

II event and the second assuming AMC-III)

Infiltration Basins

Drawdown time for infiltratin basins shall be 48hrs from peak water level. Depth and area of the infiltration basin shall be adjusted accordingly.

Maintenance Plan

City requires that a maintenance plan submitted and recoreded on the deed in a form acceptable to the city. Maintenance agreement shall identify & protect design capacity & functionality of stormwater features as well as specify methods, schdeule & responsible parties for maintenance and provide for maintenance of the facility in perpetuity.

Riley-Purgatory-Bluff Creek Watershed District

Stormwater Management Rule

3.c.1 Phosphorus Control: 60% reduction in TP 90% reduction in TSS

3.a Rate Control:

1) Activity subject to this rule shall result in no net increase in peak runoff rate for the 1-.10-, & 100-yr design storms compared to the rate in the existing condition

2) Peak runoff rates for the 2-,10- & 100-yr design storms may in increase within a specific drainage area of the site so as to create or exacerbate drainage or erosion problems

100 yr 10 day snow melt

3.b Volume Control

1) Stormwater management plan must provide for abstration of the first 1.1 inch of rainfall from the site's impervious surface.

2.3. Redevelopment: If proposed activities will increase total impervious surface by more than 50% or disturb more than 50% of existing impervious criteria shall apply to

High Water Elevation

Provide at least 2 vertical feet of seperation between low openings of structures & the 100-yr high water elevations

No evidence of ground water within 3ft of the bottom of the facility, practice or system.

Based on soil borings provided, no ground water was encountered in 21ft depth of borings (~915 bore termination)

Minnesota Pollution Control Agency

For projects disturbing an area of more than 1.0 ac Natinal Pollution Discharge Elimination System Permit is triggered (NPDES). NPDES requires proposed BMPs provide

capacity of retaining onste 1 in of runoff from all new impervious surfaces

Volume Control

VOLUME CONTROL REQUIRED:

3 new homes to be constructed - each to have individual systems

0.092 ft Required Infiltration -1.1 inch = Average Home Size (s.f.) 3500 3,500,000 Average Driveway size (s.f.) 1503 1,503.000 Average Assumed additional hardcover 700 700.000

48

Hardcover - Each Lot 5,703 sf 0.092 523 0.012 ac-ft Total = 1,568.325 cf

Infiltration rate Max Depth Max Depth Time (hrs) (in/hr) (in) 1.2 ft

VOLUME CONTROL ACHIEVED:

Rain Gardens Pre Treatment filter strips Per MN Stormwater Manual

14.40

AV=Vol below Overflow

Elev Storage (cf) Area 945.00 Rain Garden 1 0.00 NWL. 775.00 972.50 1.170.00 946.00 Outlet AV= 972.50 Rain Garden 2 930.00 0.00 NWL 860.00 932.00 1,070.00 1,930.00 Outlet

1,930.00 Rain Garden 3 923.20 725.00 0.00 NWL

924.00 1,080.00 722.00 Outlet AV=

0.3

Total AV from Filtration 3,624.50

TOTAL VOLUME CONTROL

Infiltration volume 3,624.50 Required Volume 1,568.33 Excess Volume Provided 2.056.17

Excess volume is required to meet rate control

722.00

LW=-((CIA)/(Vs)xln(1-FR))

A= Directly connected impervipous Area LW=-((.7 x 17559 x .04167) / (61.2) ln(1-.8)

C=0.7 | I=0.5in/hr = .04167ft/hr | Vs=.017 ft/s=61.2ft/hr

21.0sf/20ft long = 1.05ft wide = use 2ft filter strip

18.4sf/20ft long = 0.92ft wide = use 2ft filter strip

13. sf/20ft long = .57ft wide

LW=-((.7 x 2380 x .04167) / (61.2) ln(1-.8)

LW=-((.7 x 1885 x .04167) / (61.2) ln(1-.8)

. 13.5 sf

21.0sf

= use 2ft filter strip

Quality Control

P8 Model Results

Drawdown

Pollutant	Existing Load	Proposed Load	Removed	Proposed discharge	Δ Loading (Ex v Pro)	Removal Eff.
TP (lbs/yr)	1.6	3.58	2.2	1.4	-0.2	61%
TSS (lbs/yr)	478.4	1097.4	1004.3	93.1	-385.3	92%

Rate Control

Rate control design standards are to maintain pre-development peak runoff rates for the 1-yr, 2-yr, 10-yr, 100-yr 24-hour storm events. HydroCAD was used to model rate control for this project. The tables below compare pre-development and post-development rates.

	1-yr (cfs)	2-vr (cfs)	10-yr (cfs)	100-yr (cfs)	100yr 10 Day	Discharge				100-yr	100yr 10 Day
Discharge East	1-yr (cis)	2-yr (cis)	10-yr (cis)	100-yr (cis)	Snow melt	North	1-yr (cfs)	2-Yr (cfs)	10-yr (cfs)	(cfs)	Snow melt
Existing (1S)	0.7	0.9	1.9	4.3	0.3	Existing (3S)	1.1	1.5	3.3	7.7	0.6
Proposed (4P)	0.2	0.2	1.8	4.3	0.3	Proposed (3P)	0.0	0.0	1.0	7.7	0.5
Change in Discharge Rate	-0.5	-0.7	-0.1	0.0	0.0	Change in Discharge Rate	-1.1	-1.5	-2.3	0.0	-0.1

1-yr (cfs)	2-yr (cfs)	10-yr (cfs)	100-yr (cfs)	100yr 10 Day Snow melt
0.1	0.1	0.3	0.6	0.0
0.1	0.2	0.3	0.6	0.0
0.0	0.1	0.0	0.0	0.0
	0.1	0.1 0.1 0.1 0.2	0.1 0.1 0.3 0.1 0.2 0.3	0.1 0.1 0.3 0.6 0.1 0.2 0.3 0.6

Low Floor Separation	Low Floor	Adjacent HWL	Difference
Lot 1	952.6	946.2	6.4
18208 Priory East of lot 1 to RG 1	945.9	946.2	-0.3
Lot 2	944.6	932.3	12.3
Lot 3 to RG 2	926.1	932.3	-6.2
Lot 3 RG 3	926.1	923.8	2.3
4617 Sparrow Rd to RG 3	925.5	923.8	1.7

Meets 3ft Separation

Based on Plot 1 with water 21ft below, min distance to basin is less than 5ft, existing is 48ft

Meets 3ft Separation

Based on Plot 1 with water 21ft below, min distance to basin is less than 5ft, existing is 20ft Based on Plot 1 with water 21ft below, min distance to basin is less than 5ft (off chart), Proposed is 5ft Based on Plot 1 with water 21ft below, min distance to basin is less than 5ft, existing is 11.5ft

Borings extended 21ft below grade - No ground water was observed (Lot 2)

SB-1 Bottom Approx 923.0 SB-2 Bottom Approx 911.0

(Lot 3)

Stormwater Management Report for

Priory Woods

Minnetonka, Minnesota

Prepared on Revised

September 1, 2023

Prepared for Zehnder Homes, Inc.

10300 10 Ave N Plymouth, MN 55441 Contact: Eric Zehnder Phone: (763) 204-8114

Prepared by

Sathre-Bergquist, Inc.

14000 25th Ave N. Plymouth, MN 55447

Contact(s):

Charles Wiemerslage, P.E. cwiemerslage@sathre.com (phone) (952) 476-6000 (fax) (952) 476-0104

http://www.sathre.com/

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly registered Professional Engineer under the laws of the State of Minnesota.

1/23 Reg. No. 49180

PRIORY WOODS

Minnetonka, Minnesota

Project # 99595-151 **Date** August 24, 2023

Prepared for: Zehnder Homes Inc Prepared by: Sathre-Bergquist, Inc.

14240 23rd Ave N Plymouth, 14000 25th Avenue N, Suite 120

MN 55447 Plymouth, MN 55447

Contact: Eric Zehnder Contact: Charlie Wiemersalge tel: 952-476-6000

BLOCK 1 **GROSS AREA** WETLAND AREA **NET AREA** WIDTH @ SETBACK 25,052 s.f. Lot 1 0.58 25,052 s.f. 0.58 126.9 1.f. acres s.f. acres Lot 2 24,205 s.f. 0.56 0 s.f. 24,205 s.f. 0.56 146 +/-1.f. acres acres 30,329 s.f. Lot 3 0.70 0 30,329 0.70 114.6 +/-1.f. s.f. s.f. acres acres Total 79,586 79,586 s.f. 1.83 acres s.f. s.f. 1.83 acres

 R/W
 GROSS AREA
 WETLAND AREA
 NET AREA

 2,807
 s.f.
 0.06
 acres
 0
 s.f.
 2,807
 s.f.
 0.06
 acres

 TOTAL
 GROSS AREA
 WETLAND AREA
 NET AREA

 82,393
 s.f.
 1.89
 acres
 0
 s.f.
 82,393
 s.f.
 1.89
 acres